This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivthicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivthicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivthicc.3 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| ivthicc.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| ivthicc.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivthicc.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivthicc.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| Assertion | ivthicc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivthicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivthicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivthicc.3 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 4 | ivthicc.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 5 | ivthicc.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivthicc.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivthicc.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝜑 ) | |
| 9 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) ) | |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) ) |
| 11 | 3 10 | mpbid | ⊢ ( 𝜑 → ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) |
| 12 | 11 | simp1d | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℝ ) |
| 14 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) ) | |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) ) |
| 16 | 4 15 | mpbid | ⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) |
| 17 | 16 | simp1d | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 19 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
| 21 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 22 | 20 21 3 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 25 | 24 21 4 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 26 | iccssre | ⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ℝ ) | |
| 27 | 22 25 26 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ℝ ) |
| 28 | 27 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → 𝑦 ∈ ℝ ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑦 ∈ ℝ ) |
| 30 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑀 < 𝑁 ) | |
| 31 | 11 | simp2d | ⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
| 32 | 16 | simp3d | ⊢ ( 𝜑 → 𝑁 ≤ 𝐵 ) |
| 33 | iccss | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑀 ∧ 𝑁 ≤ 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 34 | 1 2 31 32 33 | syl22anc | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 35 | 34 5 | sstrd | ⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ 𝐷 ) |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ( 𝑀 [,] 𝑁 ) ⊆ 𝐷 ) |
| 37 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 38 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 39 | 38 7 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 40 | 8 39 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 41 | elicc2 | ⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) | |
| 42 | 22 25 41 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 43 | 42 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 44 | 3simpc | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 47 | 13 18 29 30 36 37 40 46 | ivthle | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ∃ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 48 | 35 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑧 ∈ 𝐷 ) |
| 49 | cncff | ⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → 𝐹 : 𝐷 ⟶ ℂ ) | |
| 50 | ffn | ⊢ ( 𝐹 : 𝐷 ⟶ ℂ → 𝐹 Fn 𝐷 ) | |
| 51 | 6 49 50 | 3syl | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 52 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) | |
| 53 | 51 52 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 54 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹 ) ) | |
| 55 | 53 54 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 56 | 48 55 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 57 | 56 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 58 | 8 47 57 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑦 ∈ ran 𝐹 ) |
| 59 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) | |
| 60 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑀 = 𝑁 ) | |
| 61 | 60 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 62 | 61 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) |
| 63 | 22 | rexrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
| 64 | 63 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
| 65 | iccid | ⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) | |
| 66 | 64 65 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
| 67 | 62 66 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
| 68 | 59 67 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ { ( 𝐹 ‘ 𝑀 ) } ) |
| 69 | elsni | ⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝑀 ) } → 𝑦 = ( 𝐹 ‘ 𝑀 ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 = ( 𝐹 ‘ 𝑀 ) ) |
| 71 | 5 3 | sseldd | ⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
| 72 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑀 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) | |
| 73 | 51 71 72 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 75 | 70 74 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ ran 𝐹 ) |
| 76 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝜑 ) | |
| 77 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑁 ∈ ℝ ) |
| 78 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑀 ∈ ℝ ) |
| 79 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑦 ∈ ℝ ) |
| 80 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑁 < 𝑀 ) | |
| 81 | 16 | simp2d | ⊢ ( 𝜑 → 𝐴 ≤ 𝑁 ) |
| 82 | 11 | simp3d | ⊢ ( 𝜑 → 𝑀 ≤ 𝐵 ) |
| 83 | iccss | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑁 ∧ 𝑀 ≤ 𝐵 ) ) → ( 𝑁 [,] 𝑀 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 84 | 1 2 81 82 83 | syl22anc | ⊢ ( 𝜑 → ( 𝑁 [,] 𝑀 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 85 | 84 5 | sstrd | ⊢ ( 𝜑 → ( 𝑁 [,] 𝑀 ) ⊆ 𝐷 ) |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ( 𝑁 [,] 𝑀 ) ⊆ 𝐷 ) |
| 87 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 88 | 84 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 89 | 88 7 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 90 | 76 89 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 91 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 92 | 77 78 79 80 86 87 90 91 | ivthle2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ∃ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 93 | 85 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ) → 𝑧 ∈ 𝐷 ) |
| 94 | 93 55 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 95 | 94 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 96 | 76 92 95 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑦 ∈ ran 𝐹 ) |
| 97 | 12 17 | lttri4d | ⊢ ( 𝜑 → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
| 98 | 97 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
| 99 | 58 75 96 98 | mpjao3dan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → 𝑦 ∈ ran 𝐹 ) |
| 100 | 99 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) → 𝑦 ∈ ran 𝐹 ) ) |
| 101 | 100 | ssrdv | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ran 𝐹 ) |