This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | |- S = ( T (,) +oo ) |
|
| dvfsum.z | |- Z = ( ZZ>= ` M ) |
||
| dvfsum.m | |- ( ph -> M e. ZZ ) |
||
| dvfsum.d | |- ( ph -> D e. RR ) |
||
| dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
||
| dvfsum.t | |- ( ph -> T e. RR ) |
||
| dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
||
| dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| dvfsum.c | |- ( x = k -> B = C ) |
||
| dvfsum.u | |- ( ph -> U e. RR* ) |
||
| dvfsum.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> C <_ B ) |
||
| dvfsum.h | |- H = ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) ) |
||
| dvfsumlem1.1 | |- ( ph -> X e. S ) |
||
| dvfsumlem1.2 | |- ( ph -> Y e. S ) |
||
| dvfsumlem1.3 | |- ( ph -> D <_ X ) |
||
| dvfsumlem1.4 | |- ( ph -> X <_ Y ) |
||
| dvfsumlem1.5 | |- ( ph -> Y <_ U ) |
||
| dvfsumlem1.6 | |- ( ph -> Y <_ ( ( |_ ` X ) + 1 ) ) |
||
| Assertion | dvfsumlem1 | |- ( ph -> ( H ` Y ) = ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ A ) + sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | |- S = ( T (,) +oo ) |
|
| 2 | dvfsum.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | dvfsum.m | |- ( ph -> M e. ZZ ) |
|
| 4 | dvfsum.d | |- ( ph -> D e. RR ) |
|
| 5 | dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
|
| 6 | dvfsum.t | |- ( ph -> T e. RR ) |
|
| 7 | dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 8 | dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 9 | dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
|
| 10 | dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 11 | dvfsum.c | |- ( x = k -> B = C ) |
|
| 12 | dvfsum.u | |- ( ph -> U e. RR* ) |
|
| 13 | dvfsum.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> C <_ B ) |
|
| 14 | dvfsum.h | |- H = ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) ) |
|
| 15 | dvfsumlem1.1 | |- ( ph -> X e. S ) |
|
| 16 | dvfsumlem1.2 | |- ( ph -> Y e. S ) |
|
| 17 | dvfsumlem1.3 | |- ( ph -> D <_ X ) |
|
| 18 | dvfsumlem1.4 | |- ( ph -> X <_ Y ) |
|
| 19 | dvfsumlem1.5 | |- ( ph -> Y <_ U ) |
|
| 20 | dvfsumlem1.6 | |- ( ph -> Y <_ ( ( |_ ` X ) + 1 ) ) |
|
| 21 | ioossre | |- ( T (,) +oo ) C_ RR |
|
| 22 | 1 21 | eqsstri | |- S C_ RR |
| 23 | 22 16 | sselid | |- ( ph -> Y e. RR ) |
| 24 | 22 15 | sselid | |- ( ph -> X e. RR ) |
| 25 | 24 | flcld | |- ( ph -> ( |_ ` X ) e. ZZ ) |
| 26 | reflcl | |- ( X e. RR -> ( |_ ` X ) e. RR ) |
|
| 27 | 24 26 | syl | |- ( ph -> ( |_ ` X ) e. RR ) |
| 28 | flle | |- ( X e. RR -> ( |_ ` X ) <_ X ) |
|
| 29 | 24 28 | syl | |- ( ph -> ( |_ ` X ) <_ X ) |
| 30 | 27 24 23 29 18 | letrd | |- ( ph -> ( |_ ` X ) <_ Y ) |
| 31 | flbi | |- ( ( Y e. RR /\ ( |_ ` X ) e. ZZ ) -> ( ( |_ ` Y ) = ( |_ ` X ) <-> ( ( |_ ` X ) <_ Y /\ Y < ( ( |_ ` X ) + 1 ) ) ) ) |
|
| 32 | 31 | baibd | |- ( ( ( Y e. RR /\ ( |_ ` X ) e. ZZ ) /\ ( |_ ` X ) <_ Y ) -> ( ( |_ ` Y ) = ( |_ ` X ) <-> Y < ( ( |_ ` X ) + 1 ) ) ) |
| 33 | 23 25 30 32 | syl21anc | |- ( ph -> ( ( |_ ` Y ) = ( |_ ` X ) <-> Y < ( ( |_ ` X ) + 1 ) ) ) |
| 34 | 33 | biimpar | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( |_ ` Y ) = ( |_ ` X ) ) |
| 35 | 34 | oveq2d | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( Y - ( |_ ` Y ) ) = ( Y - ( |_ ` X ) ) ) |
| 36 | 35 | oveq1d | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) = ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) ) |
| 37 | 34 | oveq2d | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( M ... ( |_ ` Y ) ) = ( M ... ( |_ ` X ) ) ) |
| 38 | 37 | sumeq1d | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( |_ ` Y ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 39 | 38 | oveq1d | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) |
| 40 | 36 39 | oveq12d | |- ( ( ph /\ Y < ( ( |_ ` X ) + 1 ) ) -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 41 | simpr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> Y = ( ( |_ ` X ) + 1 ) ) |
|
| 42 | 24 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> X e. RR ) |
| 43 | 42 | flcld | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( |_ ` X ) e. ZZ ) |
| 44 | 43 | peano2zd | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( |_ ` X ) + 1 ) e. ZZ ) |
| 45 | 41 44 | eqeltrd | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> Y e. ZZ ) |
| 46 | flid | |- ( Y e. ZZ -> ( |_ ` Y ) = Y ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( |_ ` Y ) = Y ) |
| 48 | 47 41 | eqtrd | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( |_ ` Y ) = ( ( |_ ` X ) + 1 ) ) |
| 49 | 48 | oveq2d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( Y - ( |_ ` Y ) ) = ( Y - ( ( |_ ` X ) + 1 ) ) ) |
| 50 | 49 | oveq1d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) = ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) ) |
| 51 | 23 | recnd | |- ( ph -> Y e. CC ) |
| 52 | 27 | recnd | |- ( ph -> ( |_ ` X ) e. CC ) |
| 53 | 51 52 | subcld | |- ( ph -> ( Y - ( |_ ` X ) ) e. CC ) |
| 54 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 55 | 22 | a1i | |- ( ph -> S C_ RR ) |
| 56 | 55 7 8 10 | dvmptrecl | |- ( ( ph /\ x e. S ) -> B e. RR ) |
| 57 | 56 | recnd | |- ( ( ph /\ x e. S ) -> B e. CC ) |
| 58 | 57 | ralrimiva | |- ( ph -> A. x e. S B e. CC ) |
| 59 | nfcsb1v | |- F/_ x [_ Y / x ]_ B |
|
| 60 | 59 | nfel1 | |- F/ x [_ Y / x ]_ B e. CC |
| 61 | csbeq1a | |- ( x = Y -> B = [_ Y / x ]_ B ) |
|
| 62 | 61 | eleq1d | |- ( x = Y -> ( B e. CC <-> [_ Y / x ]_ B e. CC ) ) |
| 63 | 60 62 | rspc | |- ( Y e. S -> ( A. x e. S B e. CC -> [_ Y / x ]_ B e. CC ) ) |
| 64 | 16 58 63 | sylc | |- ( ph -> [_ Y / x ]_ B e. CC ) |
| 65 | 53 54 64 | subdird | |- ( ph -> ( ( ( Y - ( |_ ` X ) ) - 1 ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - ( 1 x. [_ Y / x ]_ B ) ) ) |
| 66 | 51 52 54 | subsub4d | |- ( ph -> ( ( Y - ( |_ ` X ) ) - 1 ) = ( Y - ( ( |_ ` X ) + 1 ) ) ) |
| 67 | 66 | oveq1d | |- ( ph -> ( ( ( Y - ( |_ ` X ) ) - 1 ) x. [_ Y / x ]_ B ) = ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) ) |
| 68 | 64 | mullidd | |- ( ph -> ( 1 x. [_ Y / x ]_ B ) = [_ Y / x ]_ B ) |
| 69 | 68 | oveq2d | |- ( ph -> ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - ( 1 x. [_ Y / x ]_ B ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 70 | 65 67 69 | 3eqtr3d | |- ( ph -> ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 71 | 70 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( ( |_ ` X ) + 1 ) ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 72 | 50 71 | eqtrd | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) ) |
| 73 | 25 | peano2zd | |- ( ph -> ( ( |_ ` X ) + 1 ) e. ZZ ) |
| 74 | 3 | zred | |- ( ph -> M e. RR ) |
| 75 | peano2rem | |- ( M e. RR -> ( M - 1 ) e. RR ) |
|
| 76 | 74 75 | syl | |- ( ph -> ( M - 1 ) e. RR ) |
| 77 | 1red | |- ( ph -> 1 e. RR ) |
|
| 78 | 74 77 4 | lesubaddd | |- ( ph -> ( ( M - 1 ) <_ D <-> M <_ ( D + 1 ) ) ) |
| 79 | 5 78 | mpbird | |- ( ph -> ( M - 1 ) <_ D ) |
| 80 | 76 4 24 79 17 | letrd | |- ( ph -> ( M - 1 ) <_ X ) |
| 81 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 82 | 3 81 | syl | |- ( ph -> ( M - 1 ) e. ZZ ) |
| 83 | flge | |- ( ( X e. RR /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) <_ X <-> ( M - 1 ) <_ ( |_ ` X ) ) ) |
|
| 84 | 24 82 83 | syl2anc | |- ( ph -> ( ( M - 1 ) <_ X <-> ( M - 1 ) <_ ( |_ ` X ) ) ) |
| 85 | 80 84 | mpbid | |- ( ph -> ( M - 1 ) <_ ( |_ ` X ) ) |
| 86 | 74 77 27 | lesubaddd | |- ( ph -> ( ( M - 1 ) <_ ( |_ ` X ) <-> M <_ ( ( |_ ` X ) + 1 ) ) ) |
| 87 | 85 86 | mpbid | |- ( ph -> M <_ ( ( |_ ` X ) + 1 ) ) |
| 88 | eluz2 | |- ( ( ( |_ ` X ) + 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( ( |_ ` X ) + 1 ) e. ZZ /\ M <_ ( ( |_ ` X ) + 1 ) ) ) |
|
| 89 | 3 73 87 88 | syl3anbrc | |- ( ph -> ( ( |_ ` X ) + 1 ) e. ( ZZ>= ` M ) ) |
| 90 | 9 | recnd | |- ( ( ph /\ x e. Z ) -> B e. CC ) |
| 91 | 90 | ralrimiva | |- ( ph -> A. x e. Z B e. CC ) |
| 92 | elfzuz | |- ( k e. ( M ... ( ( |_ ` X ) + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 93 | 92 2 | eleqtrrdi | |- ( k e. ( M ... ( ( |_ ` X ) + 1 ) ) -> k e. Z ) |
| 94 | 11 | eleq1d | |- ( x = k -> ( B e. CC <-> C e. CC ) ) |
| 95 | 94 | rspccva | |- ( ( A. x e. Z B e. CC /\ k e. Z ) -> C e. CC ) |
| 96 | 91 93 95 | syl2an | |- ( ( ph /\ k e. ( M ... ( ( |_ ` X ) + 1 ) ) ) -> C e. CC ) |
| 97 | eqvisset | |- ( k = ( ( |_ ` X ) + 1 ) -> ( ( |_ ` X ) + 1 ) e. _V ) |
|
| 98 | eqeq2 | |- ( k = ( ( |_ ` X ) + 1 ) -> ( x = k <-> x = ( ( |_ ` X ) + 1 ) ) ) |
|
| 99 | 98 | biimpar | |- ( ( k = ( ( |_ ` X ) + 1 ) /\ x = ( ( |_ ` X ) + 1 ) ) -> x = k ) |
| 100 | 99 11 | syl | |- ( ( k = ( ( |_ ` X ) + 1 ) /\ x = ( ( |_ ` X ) + 1 ) ) -> B = C ) |
| 101 | 97 100 | csbied | |- ( k = ( ( |_ ` X ) + 1 ) -> [_ ( ( |_ ` X ) + 1 ) / x ]_ B = C ) |
| 102 | 101 | eqcomd | |- ( k = ( ( |_ ` X ) + 1 ) -> C = [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) |
| 103 | 89 96 102 | fsumm1 | |- ( ph -> sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C = ( sum_ k e. ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 104 | ax-1cn | |- 1 e. CC |
|
| 105 | pncan | |- ( ( ( |_ ` X ) e. CC /\ 1 e. CC ) -> ( ( ( |_ ` X ) + 1 ) - 1 ) = ( |_ ` X ) ) |
|
| 106 | 52 104 105 | sylancl | |- ( ph -> ( ( ( |_ ` X ) + 1 ) - 1 ) = ( |_ ` X ) ) |
| 107 | 106 | oveq2d | |- ( ph -> ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) = ( M ... ( |_ ` X ) ) ) |
| 108 | 107 | sumeq1d | |- ( ph -> sum_ k e. ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 109 | 108 | oveq1d | |- ( ph -> ( sum_ k e. ( M ... ( ( ( |_ ` X ) + 1 ) - 1 ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 110 | 103 109 | eqtrd | |- ( ph -> sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 111 | 110 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 112 | 48 | oveq2d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( M ... ( |_ ` Y ) ) = ( M ... ( ( |_ ` X ) + 1 ) ) ) |
| 113 | 112 | sumeq1d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( |_ ` Y ) ) C = sum_ k e. ( M ... ( ( |_ ` X ) + 1 ) ) C ) |
| 114 | 41 | csbeq1d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> [_ Y / x ]_ B = [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) |
| 115 | 114 | oveq2d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ ( ( |_ ` X ) + 1 ) / x ]_ B ) ) |
| 116 | 111 113 115 | 3eqtr4d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> sum_ k e. ( M ... ( |_ ` Y ) ) C = ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) ) |
| 117 | 116 | oveq1d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) - [_ Y / x ]_ A ) ) |
| 118 | fzfid | |- ( ph -> ( M ... ( |_ ` X ) ) e. Fin ) |
|
| 119 | elfzuz | |- ( k e. ( M ... ( |_ ` X ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 120 | 119 2 | eleqtrrdi | |- ( k e. ( M ... ( |_ ` X ) ) -> k e. Z ) |
| 121 | 91 120 95 | syl2an | |- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. CC ) |
| 122 | 118 121 | fsumcl | |- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. CC ) |
| 123 | 7 | recnd | |- ( ( ph /\ x e. S ) -> A e. CC ) |
| 124 | 123 | ralrimiva | |- ( ph -> A. x e. S A e. CC ) |
| 125 | nfcsb1v | |- F/_ x [_ Y / x ]_ A |
|
| 126 | 125 | nfel1 | |- F/ x [_ Y / x ]_ A e. CC |
| 127 | csbeq1a | |- ( x = Y -> A = [_ Y / x ]_ A ) |
|
| 128 | 127 | eleq1d | |- ( x = Y -> ( A e. CC <-> [_ Y / x ]_ A e. CC ) ) |
| 129 | 126 128 | rspc | |- ( Y e. S -> ( A. x e. S A e. CC -> [_ Y / x ]_ A e. CC ) ) |
| 130 | 16 124 129 | sylc | |- ( ph -> [_ Y / x ]_ A e. CC ) |
| 131 | 122 64 130 | addsubd | |- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) |
| 132 | 131 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( sum_ k e. ( M ... ( |_ ` X ) ) C + [_ Y / x ]_ B ) - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) |
| 133 | 117 132 | eqtrd | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) |
| 134 | 72 133 | oveq12d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) + ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) ) |
| 135 | 53 64 | mulcld | |- ( ph -> ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) e. CC ) |
| 136 | 135 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) e. CC ) |
| 137 | 64 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> [_ Y / x ]_ B e. CC ) |
| 138 | 122 130 | subcld | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) e. CC ) |
| 139 | 138 | adantr | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) e. CC ) |
| 140 | 136 137 139 | nppcan3d | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ B ) + ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) + [_ Y / x ]_ B ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 141 | 134 140 | eqtrd | |- ( ( ph /\ Y = ( ( |_ ` X ) + 1 ) ) -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 142 | peano2re | |- ( ( |_ ` X ) e. RR -> ( ( |_ ` X ) + 1 ) e. RR ) |
|
| 143 | 27 142 | syl | |- ( ph -> ( ( |_ ` X ) + 1 ) e. RR ) |
| 144 | 23 143 | leloed | |- ( ph -> ( Y <_ ( ( |_ ` X ) + 1 ) <-> ( Y < ( ( |_ ` X ) + 1 ) \/ Y = ( ( |_ ` X ) + 1 ) ) ) ) |
| 145 | 20 144 | mpbid | |- ( ph -> ( Y < ( ( |_ ` X ) + 1 ) \/ Y = ( ( |_ ` X ) + 1 ) ) ) |
| 146 | 40 141 145 | mpjaodan | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 147 | ovex | |- ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. _V |
|
| 148 | nfcv | |- F/_ x Y |
|
| 149 | nfcv | |- F/_ x ( Y - ( |_ ` Y ) ) |
|
| 150 | nfcv | |- F/_ x x. |
|
| 151 | 149 150 59 | nfov | |- F/_ x ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) |
| 152 | nfcv | |- F/_ x + |
|
| 153 | nfcv | |- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) C |
|
| 154 | nfcv | |- F/_ x - |
|
| 155 | 153 154 125 | nfov | |- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) |
| 156 | 151 152 155 | nfov | |- F/_ x ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 157 | id | |- ( x = Y -> x = Y ) |
|
| 158 | fveq2 | |- ( x = Y -> ( |_ ` x ) = ( |_ ` Y ) ) |
|
| 159 | 157 158 | oveq12d | |- ( x = Y -> ( x - ( |_ ` x ) ) = ( Y - ( |_ ` Y ) ) ) |
| 160 | 159 61 | oveq12d | |- ( x = Y -> ( ( x - ( |_ ` x ) ) x. B ) = ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) ) |
| 161 | 158 | oveq2d | |- ( x = Y -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` Y ) ) ) |
| 162 | 161 | sumeq1d | |- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
| 163 | 162 127 | oveq12d | |- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 164 | 160 163 | oveq12d | |- ( x = Y -> ( ( ( x - ( |_ ` x ) ) x. B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) = ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 165 | 148 156 164 14 | fvmptf | |- ( ( Y e. S /\ ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. _V ) -> ( H ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 166 | 16 147 165 | sylancl | |- ( ph -> ( H ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 167 | 135 130 122 | subadd23d | |- ( ph -> ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ A ) + sum_ k e. ( M ... ( |_ ` X ) ) C ) = ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ Y / x ]_ A ) ) ) |
| 168 | 146 166 167 | 3eqtr4d | |- ( ph -> ( H ` Y ) = ( ( ( ( Y - ( |_ ` X ) ) x. [_ Y / x ]_ B ) - [_ Y / x ]_ A ) + sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |