This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free definition of recs . (Contributed by Scott Fenton, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrecs2 | ⊢ recs ( 𝐹 ) = ∪ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrecs3 | ⊢ recs ( 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 2 | elin | ⊢ ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ↔ ( 𝑓 ∈ Funs ∧ 𝑓 ∈ ( ◡ Domain “ On ) ) ) | |
| 3 | vex | ⊢ 𝑓 ∈ V | |
| 4 | 3 | elfuns | ⊢ ( 𝑓 ∈ Funs ↔ Fun 𝑓 ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 3 | brcnv | ⊢ ( 𝑥 ◡ Domain 𝑓 ↔ 𝑓 Domain 𝑥 ) |
| 7 | 3 5 | brdomain | ⊢ ( 𝑓 Domain 𝑥 ↔ 𝑥 = dom 𝑓 ) |
| 8 | 6 7 | bitri | ⊢ ( 𝑥 ◡ Domain 𝑓 ↔ 𝑥 = dom 𝑓 ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ◡ Domain 𝑓 ↔ ∃ 𝑥 ∈ On 𝑥 = dom 𝑓 ) |
| 10 | 3 | elima | ⊢ ( 𝑓 ∈ ( ◡ Domain “ On ) ↔ ∃ 𝑥 ∈ On 𝑥 ◡ Domain 𝑓 ) |
| 11 | risset | ⊢ ( dom 𝑓 ∈ On ↔ ∃ 𝑥 ∈ On 𝑥 = dom 𝑓 ) | |
| 12 | 9 10 11 | 3bitr4i | ⊢ ( 𝑓 ∈ ( ◡ Domain “ On ) ↔ dom 𝑓 ∈ On ) |
| 13 | 4 12 | anbi12i | ⊢ ( ( 𝑓 ∈ Funs ∧ 𝑓 ∈ ( ◡ Domain “ On ) ) ↔ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) |
| 14 | 2 13 | bitri | ⊢ ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ↔ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) |
| 15 | 3 | eldm | ⊢ ( 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ↔ ∃ 𝑦 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) 𝑦 ) |
| 16 | brdif | ⊢ ( 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) 𝑦 ↔ ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 𝑦 ) ) | |
| 17 | vex | ⊢ 𝑦 ∈ V | |
| 18 | 3 17 | brco | ⊢ ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ↔ ∃ 𝑥 ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ) |
| 19 | 7 | anbi1i | ⊢ ( ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ↔ ( 𝑥 = dom 𝑓 ∧ 𝑥 ◡ E 𝑦 ) ) |
| 20 | 19 | exbii | ⊢ ( ∃ 𝑥 ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ↔ ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ 𝑥 ◡ E 𝑦 ) ) |
| 21 | 3 | dmex | ⊢ dom 𝑓 ∈ V |
| 22 | breq1 | ⊢ ( 𝑥 = dom 𝑓 → ( 𝑥 ◡ E 𝑦 ↔ dom 𝑓 ◡ E 𝑦 ) ) | |
| 23 | 21 22 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ 𝑥 ◡ E 𝑦 ) ↔ dom 𝑓 ◡ E 𝑦 ) |
| 24 | 20 23 | bitri | ⊢ ( ∃ 𝑥 ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ↔ dom 𝑓 ◡ E 𝑦 ) |
| 25 | 21 17 | brcnv | ⊢ ( dom 𝑓 ◡ E 𝑦 ↔ 𝑦 E dom 𝑓 ) |
| 26 | 21 | epeli | ⊢ ( 𝑦 E dom 𝑓 ↔ 𝑦 ∈ dom 𝑓 ) |
| 27 | 25 26 | bitri | ⊢ ( dom 𝑓 ◡ E 𝑦 ↔ 𝑦 ∈ dom 𝑓 ) |
| 28 | 18 24 27 | 3bitri | ⊢ ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ↔ 𝑦 ∈ dom 𝑓 ) |
| 29 | df-br | ⊢ ( 𝑓 Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 𝑦 ↔ 〈 𝑓 , 𝑦 〉 ∈ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) | |
| 30 | opex | ⊢ 〈 𝑓 , 𝑦 〉 ∈ V | |
| 31 | 30 | elfix | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ↔ 〈 𝑓 , 𝑦 〉 ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 〈 𝑓 , 𝑦 〉 ) |
| 32 | 30 30 | brco | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 〈 𝑓 , 𝑦 〉 ↔ ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ) |
| 33 | ancom | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ) ) | |
| 34 | 5 30 | brcnv | ⊢ ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ↔ 〈 𝑓 , 𝑦 〉 Apply 𝑥 ) |
| 35 | 3 17 5 | brapply | ⊢ ( 〈 𝑓 , 𝑦 〉 Apply 𝑥 ↔ 𝑥 = ( 𝑓 ‘ 𝑦 ) ) |
| 36 | 34 35 | bitri | ⊢ ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ↔ 𝑥 = ( 𝑓 ‘ 𝑦 ) ) |
| 37 | 36 | anbi1i | ⊢ ( ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ) ↔ ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ) ) |
| 38 | 33 37 | bitri | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ) ) |
| 39 | 38 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ) ) |
| 40 | fvex | ⊢ ( 𝑓 ‘ 𝑦 ) ∈ V | |
| 41 | breq2 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑦 ) → ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ↔ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) ( 𝑓 ‘ 𝑦 ) ) ) | |
| 42 | 40 41 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ) ↔ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) ( 𝑓 ‘ 𝑦 ) ) |
| 43 | 39 42 | bitri | ⊢ ( ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) ( 𝑓 ‘ 𝑦 ) ) |
| 44 | 30 40 | brco | ⊢ ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 Restrict 𝑥 ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ) |
| 45 | 3 17 5 | brrestrict | ⊢ ( 〈 𝑓 , 𝑦 〉 Restrict 𝑥 ↔ 𝑥 = ( 𝑓 ↾ 𝑦 ) ) |
| 46 | 45 | anbi1i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 Restrict 𝑥 ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 = ( 𝑓 ↾ 𝑦 ) ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ) |
| 47 | 46 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 Restrict 𝑥 ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝑓 ↾ 𝑦 ) ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ) |
| 48 | 3 | resex | ⊢ ( 𝑓 ↾ 𝑦 ) ∈ V |
| 49 | breq1 | ⊢ ( 𝑥 = ( 𝑓 ↾ 𝑦 ) → ( 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ↾ 𝑦 ) FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ) | |
| 50 | 48 49 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝑓 ↾ 𝑦 ) ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ↾ 𝑦 ) FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) |
| 51 | 47 50 | bitri | ⊢ ( ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 Restrict 𝑥 ∧ 𝑥 FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ↾ 𝑦 ) FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ) |
| 52 | 48 40 | brfullfun | ⊢ ( ( 𝑓 ↾ 𝑦 ) FullFun 𝐹 ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) |
| 53 | 44 51 52 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ Restrict ) ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) |
| 54 | 32 43 53 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 〈 𝑓 , 𝑦 〉 ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) |
| 55 | 29 31 54 | 3bitri | ⊢ ( 𝑓 Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 𝑦 ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) |
| 56 | 55 | notbii | ⊢ ( ¬ 𝑓 Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 𝑦 ↔ ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) |
| 57 | 28 56 | anbi12i | ⊢ ( ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) 𝑦 ) ↔ ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 58 | 16 57 | bitri | ⊢ ( 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) 𝑦 ↔ ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 59 | 58 | exbii | ⊢ ( ∃ 𝑦 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 60 | 15 59 | bitri | ⊢ ( 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 61 | df-rex | ⊢ ( ∃ 𝑦 ∈ dom 𝑓 ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) | |
| 62 | rexnal | ⊢ ( ∃ 𝑦 ∈ dom 𝑓 ¬ ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ¬ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) | |
| 63 | 60 61 62 | 3bitr2ri | ⊢ ( ¬ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) |
| 64 | 63 | con1bii | ⊢ ( ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ↔ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) |
| 65 | 14 64 | anbi12i | ⊢ ( ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) ↔ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 66 | anass | ⊢ ( ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) | |
| 67 | 65 66 | bitri | ⊢ ( ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 68 | eleq1 | ⊢ ( 𝑥 = dom 𝑓 → ( 𝑥 ∈ On ↔ dom 𝑓 ∈ On ) ) | |
| 69 | raleq | ⊢ ( 𝑥 = dom 𝑓 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) | |
| 70 | 68 69 | anbi12d | ⊢ ( 𝑥 = dom 𝑓 → ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 71 | 70 | anbi2d | ⊢ ( 𝑥 = dom 𝑓 → ( ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
| 72 | 21 71 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 73 | df-fn | ⊢ ( 𝑓 Fn 𝑥 ↔ ( Fun 𝑓 ∧ dom 𝑓 = 𝑥 ) ) | |
| 74 | eqcom | ⊢ ( dom 𝑓 = 𝑥 ↔ 𝑥 = dom 𝑓 ) | |
| 75 | 74 | anbi2i | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 = 𝑥 ) ↔ ( Fun 𝑓 ∧ 𝑥 = dom 𝑓 ) ) |
| 76 | ancom | ⊢ ( ( Fun 𝑓 ∧ 𝑥 = dom 𝑓 ) ↔ ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ) | |
| 77 | 73 75 76 | 3bitri | ⊢ ( 𝑓 Fn 𝑥 ↔ ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ) |
| 78 | 77 | anbi1i | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ↔ ( ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 79 | an12 | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ↔ ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) | |
| 80 | anass | ⊢ ( ( ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ↔ ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) | |
| 81 | 78 79 80 | 3bitr3ri | ⊢ ( ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) ↔ ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 82 | 81 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 83 | 67 72 82 | 3bitr2i | ⊢ ( ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 84 | eldif | ⊢ ( 𝑓 ∈ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) ↔ ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) ) | |
| 85 | df-rex | ⊢ ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) ) | |
| 86 | 83 84 85 | 3bitr4i | ⊢ ( 𝑓 ∈ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 87 | 86 | eqabi | ⊢ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
| 88 | 87 | unieqi | ⊢ ∪ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
| 89 | 1 88 | eqtr4i | ⊢ recs ( 𝐹 ) = ∪ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( FullFun 𝐹 ∘ Restrict ) ) ) ) |