This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brrestrict.1 | ⊢ 𝐴 ∈ V | |
| brrestrict.2 | ⊢ 𝐵 ∈ V | ||
| brrestrict.3 | ⊢ 𝐶 ∈ V | ||
| Assertion | brrestrict | ⊢ ( 〈 𝐴 , 𝐵 〉 Restrict 𝐶 ↔ 𝐶 = ( 𝐴 ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrestrict.1 | ⊢ 𝐴 ∈ V | |
| 2 | brrestrict.2 | ⊢ 𝐵 ∈ V | |
| 3 | brrestrict.3 | ⊢ 𝐶 ∈ V | |
| 4 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 5 | 4 3 | brco | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Cap ∘ ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) ) 𝐶 ↔ ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) 𝑥 ∧ 𝑥 Cap 𝐶 ) ) |
| 6 | 4 | brtxp2 | ⊢ ( 〈 𝐴 , 𝐵 〉 ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) 𝑥 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 1st 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ) ) |
| 7 | 3anrot | ⊢ ( ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 1st 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ) ↔ ( 〈 𝐴 , 𝐵 〉 1st 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) | |
| 8 | 1 2 | br1steq | ⊢ ( 〈 𝐴 , 𝐵 〉 1st 𝑎 ↔ 𝑎 = 𝐴 ) |
| 9 | vex | ⊢ 𝑏 ∈ V | |
| 10 | 4 9 | brco | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ↔ ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( 2nd ⊗ ( Range ∘ 1st ) ) 𝑥 ∧ 𝑥 Cart 𝑏 ) ) |
| 11 | 4 | brtxp2 | ⊢ ( 〈 𝐴 , 𝐵 〉 ( 2nd ⊗ ( Range ∘ 1st ) ) 𝑥 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 2nd 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ) ) |
| 12 | 3anrot | ⊢ ( ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 2nd 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ) ↔ ( 〈 𝐴 , 𝐵 〉 2nd 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) | |
| 13 | 1 2 | br2ndeq | ⊢ ( 〈 𝐴 , 𝐵 〉 2nd 𝑎 ↔ 𝑎 = 𝐵 ) |
| 14 | 4 9 | brco | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ↔ ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 1st 𝑥 ∧ 𝑥 Range 𝑏 ) ) |
| 15 | 1 2 | br1steq | ⊢ ( 〈 𝐴 , 𝐵 〉 1st 𝑥 ↔ 𝑥 = 𝐴 ) |
| 16 | 15 | anbi1i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 1st 𝑥 ∧ 𝑥 Range 𝑏 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑥 Range 𝑏 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 1st 𝑥 ∧ 𝑥 Range 𝑏 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 Range 𝑏 ) ) |
| 18 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 Range 𝑏 ↔ 𝐴 Range 𝑏 ) ) | |
| 19 | 1 18 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 Range 𝑏 ) ↔ 𝐴 Range 𝑏 ) |
| 20 | 17 19 | bitri | ⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 1st 𝑥 ∧ 𝑥 Range 𝑏 ) ↔ 𝐴 Range 𝑏 ) |
| 21 | 1 9 | brrange | ⊢ ( 𝐴 Range 𝑏 ↔ 𝑏 = ran 𝐴 ) |
| 22 | 14 20 21 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ↔ 𝑏 = ran 𝐴 ) |
| 23 | biid | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 ↔ 𝑥 = 〈 𝑎 , 𝑏 〉 ) | |
| 24 | 13 22 23 | 3anbi123i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 2nd 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑎 = 𝐵 ∧ 𝑏 = ran 𝐴 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) |
| 25 | 12 24 | bitri | ⊢ ( ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 2nd 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ) ↔ ( 𝑎 = 𝐵 ∧ 𝑏 = ran 𝐴 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) |
| 26 | 25 | 2exbii | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 2nd 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Range ∘ 1st ) 𝑏 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐵 ∧ 𝑏 = ran 𝐴 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) |
| 27 | 1 | rnex | ⊢ ran 𝐴 ∈ V |
| 28 | opeq1 | ⊢ ( 𝑎 = 𝐵 → 〈 𝑎 , 𝑏 〉 = 〈 𝐵 , 𝑏 〉 ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑎 = 𝐵 → ( 𝑥 = 〈 𝑎 , 𝑏 〉 ↔ 𝑥 = 〈 𝐵 , 𝑏 〉 ) ) |
| 30 | opeq2 | ⊢ ( 𝑏 = ran 𝐴 → 〈 𝐵 , 𝑏 〉 = 〈 𝐵 , ran 𝐴 〉 ) | |
| 31 | 30 | eqeq2d | ⊢ ( 𝑏 = ran 𝐴 → ( 𝑥 = 〈 𝐵 , 𝑏 〉 ↔ 𝑥 = 〈 𝐵 , ran 𝐴 〉 ) ) |
| 32 | 2 27 29 31 | ceqsex2v | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐵 ∧ 𝑏 = ran 𝐴 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ↔ 𝑥 = 〈 𝐵 , ran 𝐴 〉 ) |
| 33 | 11 26 32 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ( 2nd ⊗ ( Range ∘ 1st ) ) 𝑥 ↔ 𝑥 = 〈 𝐵 , ran 𝐴 〉 ) |
| 34 | 33 | anbi1i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ( 2nd ⊗ ( Range ∘ 1st ) ) 𝑥 ∧ 𝑥 Cart 𝑏 ) ↔ ( 𝑥 = 〈 𝐵 , ran 𝐴 〉 ∧ 𝑥 Cart 𝑏 ) ) |
| 35 | 34 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( 2nd ⊗ ( Range ∘ 1st ) ) 𝑥 ∧ 𝑥 Cart 𝑏 ) ↔ ∃ 𝑥 ( 𝑥 = 〈 𝐵 , ran 𝐴 〉 ∧ 𝑥 Cart 𝑏 ) ) |
| 36 | opex | ⊢ 〈 𝐵 , ran 𝐴 〉 ∈ V | |
| 37 | breq1 | ⊢ ( 𝑥 = 〈 𝐵 , ran 𝐴 〉 → ( 𝑥 Cart 𝑏 ↔ 〈 𝐵 , ran 𝐴 〉 Cart 𝑏 ) ) | |
| 38 | 36 37 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 〈 𝐵 , ran 𝐴 〉 ∧ 𝑥 Cart 𝑏 ) ↔ 〈 𝐵 , ran 𝐴 〉 Cart 𝑏 ) |
| 39 | 35 38 | bitri | ⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( 2nd ⊗ ( Range ∘ 1st ) ) 𝑥 ∧ 𝑥 Cart 𝑏 ) ↔ 〈 𝐵 , ran 𝐴 〉 Cart 𝑏 ) |
| 40 | 2 27 9 | brcart | ⊢ ( 〈 𝐵 , ran 𝐴 〉 Cart 𝑏 ↔ 𝑏 = ( 𝐵 × ran 𝐴 ) ) |
| 41 | 10 39 40 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ↔ 𝑏 = ( 𝐵 × ran 𝐴 ) ) |
| 42 | 8 41 23 | 3anbi123i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 1st 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝐵 × ran 𝐴 ) ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) |
| 43 | 7 42 | bitri | ⊢ ( ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 1st 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ) ↔ ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝐵 × ran 𝐴 ) ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) |
| 44 | 43 | 2exbii | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝐴 , 𝐵 〉 1st 𝑎 ∧ 〈 𝐴 , 𝐵 〉 ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) 𝑏 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝐵 × ran 𝐴 ) ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) |
| 45 | 2 27 | xpex | ⊢ ( 𝐵 × ran 𝐴 ) ∈ V |
| 46 | opeq1 | ⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , 𝑏 〉 = 〈 𝐴 , 𝑏 〉 ) | |
| 47 | 46 | eqeq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝑥 = 〈 𝑎 , 𝑏 〉 ↔ 𝑥 = 〈 𝐴 , 𝑏 〉 ) ) |
| 48 | opeq2 | ⊢ ( 𝑏 = ( 𝐵 × ran 𝐴 ) → 〈 𝐴 , 𝑏 〉 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ) | |
| 49 | 48 | eqeq2d | ⊢ ( 𝑏 = ( 𝐵 × ran 𝐴 ) → ( 𝑥 = 〈 𝐴 , 𝑏 〉 ↔ 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ) ) |
| 50 | 1 45 47 49 | ceqsex2v | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝐴 ∧ 𝑏 = ( 𝐵 × ran 𝐴 ) ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ↔ 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ) |
| 51 | 6 44 50 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) 𝑥 ↔ 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ) |
| 52 | 51 | anbi1i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) 𝑥 ∧ 𝑥 Cap 𝐶 ) ↔ ( 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ∧ 𝑥 Cap 𝐶 ) ) |
| 53 | 52 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝐴 , 𝐵 〉 ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) 𝑥 ∧ 𝑥 Cap 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ∧ 𝑥 Cap 𝐶 ) ) |
| 54 | 5 53 | bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Cap ∘ ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) ) 𝐶 ↔ ∃ 𝑥 ( 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ∧ 𝑥 Cap 𝐶 ) ) |
| 55 | opex | ⊢ 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ∈ V | |
| 56 | breq1 | ⊢ ( 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 → ( 𝑥 Cap 𝐶 ↔ 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 Cap 𝐶 ) ) | |
| 57 | 55 56 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 ∧ 𝑥 Cap 𝐶 ) ↔ 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 Cap 𝐶 ) |
| 58 | 1 45 3 | brcap | ⊢ ( 〈 𝐴 , ( 𝐵 × ran 𝐴 ) 〉 Cap 𝐶 ↔ 𝐶 = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ) |
| 59 | 54 57 58 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ( Cap ∘ ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) ) 𝐶 ↔ 𝐶 = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ) |
| 60 | df-restrict | ⊢ Restrict = ( Cap ∘ ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) ) | |
| 61 | 60 | breqi | ⊢ ( 〈 𝐴 , 𝐵 〉 Restrict 𝐶 ↔ 〈 𝐴 , 𝐵 〉 ( Cap ∘ ( 1st ⊗ ( Cart ∘ ( 2nd ⊗ ( Range ∘ 1st ) ) ) ) ) 𝐶 ) |
| 62 | dfres3 | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) | |
| 63 | 62 | eqeq2i | ⊢ ( 𝐶 = ( 𝐴 ↾ 𝐵 ) ↔ 𝐶 = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ) |
| 64 | 59 61 63 | 3bitr4i | ⊢ ( 〈 𝐴 , 𝐵 〉 Restrict 𝐶 ↔ 𝐶 = ( 𝐴 ↾ 𝐵 ) ) |