This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfon2lem4.1 | ⊢ 𝐴 ∈ V | |
| dfon2lem4.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | dfon2lem4 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2lem4.1 | ⊢ 𝐴 ∈ V | |
| 2 | dfon2lem4.2 | ⊢ 𝐵 ∈ V | |
| 3 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 4 | 3 | sseli | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ) |
| 5 | dfon2lem3 | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) ) | |
| 6 | 1 5 | ax-mp | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( Tr 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) ) |
| 7 | 6 | simprd | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 ) |
| 8 | eleq1 | ⊢ ( 𝑧 = ( 𝐴 ∩ 𝐵 ) → ( 𝑧 ∈ 𝑧 ↔ ( 𝐴 ∩ 𝐵 ) ∈ 𝑧 ) ) | |
| 9 | eleq2 | ⊢ ( 𝑧 = ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝑧 ↔ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 10 | 8 9 | bitrd | ⊢ ( 𝑧 = ( 𝐴 ∩ 𝐵 ) → ( 𝑧 ∈ 𝑧 ↔ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 11 | 10 | notbid | ⊢ ( 𝑧 = ( 𝐴 ∩ 𝐵 ) → ( ¬ 𝑧 ∈ 𝑧 ↔ ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 12 | 11 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧 → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 13 | 7 12 | syl | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 15 | 4 14 | syl5 | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 16 | 15 | pm2.01d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 17 | elin | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) | |
| 18 | 16 17 | sylnib | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) |
| 19 | 6 | simpld | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → Tr 𝐴 ) |
| 20 | dfon2lem3 | ⊢ ( 𝐵 ∈ V → ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝑧 ) ) ) | |
| 21 | 2 20 | ax-mp | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( Tr 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 ∈ 𝑧 ) ) |
| 22 | 21 | simpld | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → Tr 𝐵 ) |
| 23 | trin | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴 ∩ 𝐵 ) ) | |
| 24 | 19 22 23 | syl2an | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → Tr ( 𝐴 ∩ 𝐵 ) ) |
| 25 | 1 | inex1 | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ V |
| 26 | psseq1 | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) → ( 𝑥 ⊊ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ) ) | |
| 27 | treq | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) → ( Tr 𝑥 ↔ Tr ( 𝐴 ∩ 𝐵 ) ) ) | |
| 28 | 26 27 | anbi12d | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) → ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 29 | eleq1 | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) → ( ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ) ) ) |
| 31 | 25 30 | spcv | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ) ) |
| 33 | 24 32 | mpan2d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ) ) |
| 34 | psseq1 | ⊢ ( 𝑦 = ( 𝐴 ∩ 𝐵 ) → ( 𝑦 ⊊ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) ) | |
| 35 | treq | ⊢ ( 𝑦 = ( 𝐴 ∩ 𝐵 ) → ( Tr 𝑦 ↔ Tr ( 𝐴 ∩ 𝐵 ) ) ) | |
| 36 | 34 35 | anbi12d | ⊢ ( 𝑦 = ( 𝐴 ∩ 𝐵 ) → ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 37 | eleq1 | ⊢ ( 𝑦 = ( 𝐴 ∩ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) | |
| 38 | 36 37 | imbi12d | ⊢ ( 𝑦 = ( 𝐴 ∩ 𝐵 ) → ( ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) ) |
| 39 | 25 38 | spcv | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) |
| 40 | 39 | adantl | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∧ Tr ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) |
| 41 | 24 40 | mpan2d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) |
| 42 | 33 41 | anim12d | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) ) |
| 43 | 18 42 | mtod | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) ) |
| 44 | ianor | ⊢ ( ¬ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) ↔ ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) ) | |
| 45 | 43 44 | sylib | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) ) |
| 46 | sspss | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) | |
| 47 | 3 46 | mpbi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 48 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 49 | sspss | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) | |
| 50 | 48 49 | mpbi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 51 | orel1 | ⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) | |
| 52 | orc | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) | |
| 53 | 51 52 | syl6 | ⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) ) |
| 54 | orel1 | ⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) | |
| 55 | olc | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐵 → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) | |
| 56 | 54 55 | syl6 | ⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 → ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) ) |
| 57 | 53 56 | jaoa | ⊢ ( ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) → ( ( ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) ) |
| 58 | 47 50 57 | mp2ani | ⊢ ( ( ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐴 ∨ ¬ ( 𝐴 ∩ 𝐵 ) ⊊ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) |
| 59 | 45 58 | syl | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) |
| 60 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) | |
| 61 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) | |
| 62 | 60 61 | orbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) ) |
| 63 | 59 62 | sylibr | ⊢ ( ( ∀ 𝑥 ( ( 𝑥 ⊊ 𝐴 ∧ Tr 𝑥 ) → 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ( ( 𝑦 ⊊ 𝐵 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |