This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | untsucf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| Assertion | untsucf | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | untsucf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | nfv | ⊢ Ⅎ 𝑦 ¬ 𝑥 ∈ 𝑥 | |
| 3 | 1 2 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | elsuc | ⊢ ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 6 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 7 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 8 | 6 7 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 10 | 9 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
| 11 | untelirr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴 ) | |
| 12 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 13 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴 ) ) | |
| 14 | 12 13 | bitrd | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴 ) ) |
| 15 | 14 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑦 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
| 16 | 11 15 | syl5ibrcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 = 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
| 17 | 10 16 | jaod | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → ¬ 𝑦 ∈ 𝑦 ) ) |
| 18 | 5 17 | biimtrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ( 𝑦 ∈ suc 𝐴 → ¬ 𝑦 ∈ 𝑦 ) ) |
| 19 | 3 18 | ralrimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀ 𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦 ) |