This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a walk <. H , Q >. . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | |- V = ( Vtx ` G ) |
|
| crctcsh.i | |- I = ( iEdg ` G ) |
||
| crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
||
| crctcsh.n | |- N = ( # ` F ) |
||
| crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
||
| crctcsh.h | |- H = ( F cyclShift S ) |
||
| crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| Assertion | crctcshwlkn0 | |- ( ( ph /\ S =/= 0 ) -> H ( Walks ` G ) Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | |- V = ( Vtx ` G ) |
|
| 2 | crctcsh.i | |- I = ( iEdg ` G ) |
|
| 3 | crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 4 | crctcsh.n | |- N = ( # ` F ) |
|
| 5 | crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
|
| 6 | crctcsh.h | |- H = ( F cyclShift S ) |
|
| 7 | crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 8 | crctiswlk | |- ( F ( Circuits ` G ) P -> F ( Walks ` G ) P ) |
|
| 9 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 10 | cshwcl | |- ( F e. Word dom I -> ( F cyclShift S ) e. Word dom I ) |
|
| 11 | 3 8 9 10 | 4syl | |- ( ph -> ( F cyclShift S ) e. Word dom I ) |
| 12 | 6 11 | eqeltrid | |- ( ph -> H e. Word dom I ) |
| 13 | 12 | adantr | |- ( ( ph /\ S =/= 0 ) -> H e. Word dom I ) |
| 14 | 3 8 | syl | |- ( ph -> F ( Walks ` G ) P ) |
| 15 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 16 | simpll | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) /\ x <_ ( N - S ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
|
| 17 | elfznn0 | |- ( x e. ( 0 ... N ) -> x e. NN0 ) |
|
| 18 | 17 | adantl | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> x e. NN0 ) |
| 19 | elfzonn0 | |- ( S e. ( 0 ..^ N ) -> S e. NN0 ) |
|
| 20 | 19 | adantr | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> S e. NN0 ) |
| 21 | 18 20 | nn0addcld | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( x + S ) e. NN0 ) |
| 22 | 21 | adantr | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( x + S ) e. NN0 ) |
| 23 | elfz3nn0 | |- ( x e. ( 0 ... N ) -> N e. NN0 ) |
|
| 24 | 4 23 | eqeltrrid | |- ( x e. ( 0 ... N ) -> ( # ` F ) e. NN0 ) |
| 25 | 24 | ad2antlr | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( # ` F ) e. NN0 ) |
| 26 | elfzelz | |- ( x e. ( 0 ... N ) -> x e. ZZ ) |
|
| 27 | 26 | zred | |- ( x e. ( 0 ... N ) -> x e. RR ) |
| 28 | 27 | adantl | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> x e. RR ) |
| 29 | elfzoelz | |- ( S e. ( 0 ..^ N ) -> S e. ZZ ) |
|
| 30 | 29 | zred | |- ( S e. ( 0 ..^ N ) -> S e. RR ) |
| 31 | 30 | adantr | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> S e. RR ) |
| 32 | elfzel2 | |- ( x e. ( 0 ... N ) -> N e. ZZ ) |
|
| 33 | 32 | zred | |- ( x e. ( 0 ... N ) -> N e. RR ) |
| 34 | 33 | adantl | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> N e. RR ) |
| 35 | leaddsub | |- ( ( x e. RR /\ S e. RR /\ N e. RR ) -> ( ( x + S ) <_ N <-> x <_ ( N - S ) ) ) |
|
| 36 | 28 31 34 35 | syl3anc | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( ( x + S ) <_ N <-> x <_ ( N - S ) ) ) |
| 37 | 36 | biimpar | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( x + S ) <_ N ) |
| 38 | 37 4 | breqtrdi | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( x + S ) <_ ( # ` F ) ) |
| 39 | 22 25 38 | 3jca | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( ( x + S ) e. NN0 /\ ( # ` F ) e. NN0 /\ ( x + S ) <_ ( # ` F ) ) ) |
| 40 | 5 39 | sylanl1 | |- ( ( ( ph /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( ( x + S ) e. NN0 /\ ( # ` F ) e. NN0 /\ ( x + S ) <_ ( # ` F ) ) ) |
| 41 | elfz2nn0 | |- ( ( x + S ) e. ( 0 ... ( # ` F ) ) <-> ( ( x + S ) e. NN0 /\ ( # ` F ) e. NN0 /\ ( x + S ) <_ ( # ` F ) ) ) |
|
| 42 | 40 41 | sylibr | |- ( ( ( ph /\ x e. ( 0 ... N ) ) /\ x <_ ( N - S ) ) -> ( x + S ) e. ( 0 ... ( # ` F ) ) ) |
| 43 | 42 | adantll | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) /\ x <_ ( N - S ) ) -> ( x + S ) e. ( 0 ... ( # ` F ) ) ) |
| 44 | 16 43 | ffvelcdmd | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) /\ x <_ ( N - S ) ) -> ( P ` ( x + S ) ) e. V ) |
| 45 | simpll | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) /\ -. x <_ ( N - S ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
|
| 46 | elfzoel2 | |- ( S e. ( 0 ..^ N ) -> N e. ZZ ) |
|
| 47 | zaddcl | |- ( ( x e. ZZ /\ S e. ZZ ) -> ( x + S ) e. ZZ ) |
|
| 48 | 47 | adantrr | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( x + S ) e. ZZ ) |
| 49 | simprr | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
|
| 50 | 48 49 | zsubcld | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( ( x + S ) - N ) e. ZZ ) |
| 51 | 50 | adantr | |- ( ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) /\ -. x <_ ( N - S ) ) -> ( ( x + S ) - N ) e. ZZ ) |
| 52 | zsubcl | |- ( ( N e. ZZ /\ S e. ZZ ) -> ( N - S ) e. ZZ ) |
|
| 53 | 52 | ancoms | |- ( ( S e. ZZ /\ N e. ZZ ) -> ( N - S ) e. ZZ ) |
| 54 | 53 | zred | |- ( ( S e. ZZ /\ N e. ZZ ) -> ( N - S ) e. RR ) |
| 55 | zre | |- ( x e. ZZ -> x e. RR ) |
|
| 56 | ltnle | |- ( ( ( N - S ) e. RR /\ x e. RR ) -> ( ( N - S ) < x <-> -. x <_ ( N - S ) ) ) |
|
| 57 | 54 55 56 | syl2anr | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( ( N - S ) < x <-> -. x <_ ( N - S ) ) ) |
| 58 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 59 | 58 | adantl | |- ( ( S e. ZZ /\ N e. ZZ ) -> N e. RR ) |
| 60 | zre | |- ( S e. ZZ -> S e. RR ) |
|
| 61 | 60 | adantr | |- ( ( S e. ZZ /\ N e. ZZ ) -> S e. RR ) |
| 62 | 55 | adantr | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> x e. RR ) |
| 63 | ltsubadd | |- ( ( N e. RR /\ S e. RR /\ x e. RR ) -> ( ( N - S ) < x <-> N < ( x + S ) ) ) |
|
| 64 | 59 61 62 63 | syl2an23an | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( ( N - S ) < x <-> N < ( x + S ) ) ) |
| 65 | 59 | adantl | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> N e. RR ) |
| 66 | 48 | zred | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( x + S ) e. RR ) |
| 67 | 65 66 | posdifd | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( N < ( x + S ) <-> 0 < ( ( x + S ) - N ) ) ) |
| 68 | 0red | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> 0 e. RR ) |
|
| 69 | 50 | zred | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( ( x + S ) - N ) e. RR ) |
| 70 | ltle | |- ( ( 0 e. RR /\ ( ( x + S ) - N ) e. RR ) -> ( 0 < ( ( x + S ) - N ) -> 0 <_ ( ( x + S ) - N ) ) ) |
|
| 71 | 68 69 70 | syl2anc | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( 0 < ( ( x + S ) - N ) -> 0 <_ ( ( x + S ) - N ) ) ) |
| 72 | 67 71 | sylbid | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( N < ( x + S ) -> 0 <_ ( ( x + S ) - N ) ) ) |
| 73 | 64 72 | sylbid | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( ( N - S ) < x -> 0 <_ ( ( x + S ) - N ) ) ) |
| 74 | 57 73 | sylbird | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( -. x <_ ( N - S ) -> 0 <_ ( ( x + S ) - N ) ) ) |
| 75 | 74 | imp | |- ( ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) /\ -. x <_ ( N - S ) ) -> 0 <_ ( ( x + S ) - N ) ) |
| 76 | 51 75 | jca | |- ( ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) /\ -. x <_ ( N - S ) ) -> ( ( ( x + S ) - N ) e. ZZ /\ 0 <_ ( ( x + S ) - N ) ) ) |
| 77 | 76 | exp31 | |- ( x e. ZZ -> ( ( S e. ZZ /\ N e. ZZ ) -> ( -. x <_ ( N - S ) -> ( ( ( x + S ) - N ) e. ZZ /\ 0 <_ ( ( x + S ) - N ) ) ) ) ) |
| 78 | 77 26 | syl11 | |- ( ( S e. ZZ /\ N e. ZZ ) -> ( x e. ( 0 ... N ) -> ( -. x <_ ( N - S ) -> ( ( ( x + S ) - N ) e. ZZ /\ 0 <_ ( ( x + S ) - N ) ) ) ) ) |
| 79 | 29 46 78 | syl2anc | |- ( S e. ( 0 ..^ N ) -> ( x e. ( 0 ... N ) -> ( -. x <_ ( N - S ) -> ( ( ( x + S ) - N ) e. ZZ /\ 0 <_ ( ( x + S ) - N ) ) ) ) ) |
| 80 | 79 | imp31 | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( ( x + S ) - N ) e. ZZ /\ 0 <_ ( ( x + S ) - N ) ) ) |
| 81 | elnn0z | |- ( ( ( x + S ) - N ) e. NN0 <-> ( ( ( x + S ) - N ) e. ZZ /\ 0 <_ ( ( x + S ) - N ) ) ) |
|
| 82 | 80 81 | sylibr | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( x + S ) - N ) e. NN0 ) |
| 83 | 24 | ad2antlr | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( # ` F ) e. NN0 ) |
| 84 | elfzo0 | |- ( S e. ( 0 ..^ N ) <-> ( S e. NN0 /\ N e. NN /\ S < N ) ) |
|
| 85 | elfz2nn0 | |- ( x e. ( 0 ... N ) <-> ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) |
|
| 86 | nn0re | |- ( S e. NN0 -> S e. RR ) |
|
| 87 | 86 | 3ad2ant1 | |- ( ( S e. NN0 /\ N e. NN /\ S < N ) -> S e. RR ) |
| 88 | nn0re | |- ( x e. NN0 -> x e. RR ) |
|
| 89 | 88 | 3ad2ant1 | |- ( ( x e. NN0 /\ N e. NN0 /\ x <_ N ) -> x e. RR ) |
| 90 | 87 89 | anim12ci | |- ( ( ( S e. NN0 /\ N e. NN /\ S < N ) /\ ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) -> ( x e. RR /\ S e. RR ) ) |
| 91 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 92 | 91 91 | jca | |- ( N e. NN -> ( N e. RR /\ N e. RR ) ) |
| 93 | 92 | 3ad2ant2 | |- ( ( S e. NN0 /\ N e. NN /\ S < N ) -> ( N e. RR /\ N e. RR ) ) |
| 94 | 93 | adantr | |- ( ( ( S e. NN0 /\ N e. NN /\ S < N ) /\ ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) -> ( N e. RR /\ N e. RR ) ) |
| 95 | 90 94 | jca | |- ( ( ( S e. NN0 /\ N e. NN /\ S < N ) /\ ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) -> ( ( x e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) ) |
| 96 | simpr3 | |- ( ( ( S e. NN0 /\ N e. NN /\ S < N ) /\ ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) -> x <_ N ) |
|
| 97 | ltle | |- ( ( S e. RR /\ N e. RR ) -> ( S < N -> S <_ N ) ) |
|
| 98 | 86 91 97 | syl2an | |- ( ( S e. NN0 /\ N e. NN ) -> ( S < N -> S <_ N ) ) |
| 99 | 98 | 3impia | |- ( ( S e. NN0 /\ N e. NN /\ S < N ) -> S <_ N ) |
| 100 | 99 | adantr | |- ( ( ( S e. NN0 /\ N e. NN /\ S < N ) /\ ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) -> S <_ N ) |
| 101 | 95 96 100 | jca32 | |- ( ( ( S e. NN0 /\ N e. NN /\ S < N ) /\ ( x e. NN0 /\ N e. NN0 /\ x <_ N ) ) -> ( ( ( x e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) /\ ( x <_ N /\ S <_ N ) ) ) |
| 102 | 84 85 101 | syl2anb | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( ( ( x e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) /\ ( x <_ N /\ S <_ N ) ) ) |
| 103 | le2add | |- ( ( ( x e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) -> ( ( x <_ N /\ S <_ N ) -> ( x + S ) <_ ( N + N ) ) ) |
|
| 104 | 103 | imp | |- ( ( ( ( x e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) /\ ( x <_ N /\ S <_ N ) ) -> ( x + S ) <_ ( N + N ) ) |
| 105 | 102 104 | syl | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( x + S ) <_ ( N + N ) ) |
| 106 | 66 65 65 | 3jca | |- ( ( x e. ZZ /\ ( S e. ZZ /\ N e. ZZ ) ) -> ( ( x + S ) e. RR /\ N e. RR /\ N e. RR ) ) |
| 107 | 106 | ex | |- ( x e. ZZ -> ( ( S e. ZZ /\ N e. ZZ ) -> ( ( x + S ) e. RR /\ N e. RR /\ N e. RR ) ) ) |
| 108 | 107 26 | syl11 | |- ( ( S e. ZZ /\ N e. ZZ ) -> ( x e. ( 0 ... N ) -> ( ( x + S ) e. RR /\ N e. RR /\ N e. RR ) ) ) |
| 109 | 29 46 108 | syl2anc | |- ( S e. ( 0 ..^ N ) -> ( x e. ( 0 ... N ) -> ( ( x + S ) e. RR /\ N e. RR /\ N e. RR ) ) ) |
| 110 | 109 | imp | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( ( x + S ) e. RR /\ N e. RR /\ N e. RR ) ) |
| 111 | lesubadd | |- ( ( ( x + S ) e. RR /\ N e. RR /\ N e. RR ) -> ( ( ( x + S ) - N ) <_ N <-> ( x + S ) <_ ( N + N ) ) ) |
|
| 112 | 110 111 | syl | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( ( ( x + S ) - N ) <_ N <-> ( x + S ) <_ ( N + N ) ) ) |
| 113 | 105 112 | mpbird | |- ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) -> ( ( x + S ) - N ) <_ N ) |
| 114 | 113 | adantr | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( x + S ) - N ) <_ N ) |
| 115 | 114 4 | breqtrdi | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( x + S ) - N ) <_ ( # ` F ) ) |
| 116 | 82 83 115 | 3jca | |- ( ( ( S e. ( 0 ..^ N ) /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( ( x + S ) - N ) e. NN0 /\ ( # ` F ) e. NN0 /\ ( ( x + S ) - N ) <_ ( # ` F ) ) ) |
| 117 | 5 116 | sylanl1 | |- ( ( ( ph /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( ( x + S ) - N ) e. NN0 /\ ( # ` F ) e. NN0 /\ ( ( x + S ) - N ) <_ ( # ` F ) ) ) |
| 118 | elfz2nn0 | |- ( ( ( x + S ) - N ) e. ( 0 ... ( # ` F ) ) <-> ( ( ( x + S ) - N ) e. NN0 /\ ( # ` F ) e. NN0 /\ ( ( x + S ) - N ) <_ ( # ` F ) ) ) |
|
| 119 | 117 118 | sylibr | |- ( ( ( ph /\ x e. ( 0 ... N ) ) /\ -. x <_ ( N - S ) ) -> ( ( x + S ) - N ) e. ( 0 ... ( # ` F ) ) ) |
| 120 | 119 | adantll | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) /\ -. x <_ ( N - S ) ) -> ( ( x + S ) - N ) e. ( 0 ... ( # ` F ) ) ) |
| 121 | 45 120 | ffvelcdmd | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) /\ -. x <_ ( N - S ) ) -> ( P ` ( ( x + S ) - N ) ) e. V ) |
| 122 | 44 121 | ifclda | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( ph /\ x e. ( 0 ... N ) ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) e. V ) |
| 123 | 122 | exp32 | |- ( P : ( 0 ... ( # ` F ) ) --> V -> ( ph -> ( x e. ( 0 ... N ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) e. V ) ) ) |
| 124 | 15 123 | syl | |- ( F ( Walks ` G ) P -> ( ph -> ( x e. ( 0 ... N ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) e. V ) ) ) |
| 125 | 14 124 | mpcom | |- ( ph -> ( x e. ( 0 ... N ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) e. V ) ) |
| 126 | 125 | imp | |- ( ( ph /\ x e. ( 0 ... N ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) e. V ) |
| 127 | 126 7 | fmptd | |- ( ph -> Q : ( 0 ... N ) --> V ) |
| 128 | 1 2 3 4 5 6 | crctcshlem2 | |- ( ph -> ( # ` H ) = N ) |
| 129 | 128 | oveq2d | |- ( ph -> ( 0 ... ( # ` H ) ) = ( 0 ... N ) ) |
| 130 | 129 | feq2d | |- ( ph -> ( Q : ( 0 ... ( # ` H ) ) --> V <-> Q : ( 0 ... N ) --> V ) ) |
| 131 | 127 130 | mpbird | |- ( ph -> Q : ( 0 ... ( # ` H ) ) --> V ) |
| 132 | 131 | adantr | |- ( ( ph /\ S =/= 0 ) -> Q : ( 0 ... ( # ` H ) ) --> V ) |
| 133 | 1 2 | wlkprop | |- ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) ) |
| 134 | 3 8 133 | 3syl | |- ( ph -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) ) |
| 135 | 134 | adantr | |- ( ( ph /\ S =/= 0 ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) ) |
| 136 | 4 | eqcomi | |- ( # ` F ) = N |
| 137 | 136 | oveq2i | |- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) |
| 138 | 137 | raleqi | |- ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
| 139 | fzo1fzo0n0 | |- ( S e. ( 1 ..^ N ) <-> ( S e. ( 0 ..^ N ) /\ S =/= 0 ) ) |
|
| 140 | 139 | simplbi2 | |- ( S e. ( 0 ..^ N ) -> ( S =/= 0 -> S e. ( 1 ..^ N ) ) ) |
| 141 | 5 140 | syl | |- ( ph -> ( S =/= 0 -> S e. ( 1 ..^ N ) ) ) |
| 142 | 141 | imp | |- ( ( ph /\ S =/= 0 ) -> S e. ( 1 ..^ N ) ) |
| 143 | 142 | ad2antlr | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> S e. ( 1 ..^ N ) ) |
| 144 | simplll | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> F e. Word dom I ) |
|
| 145 | wkslem1 | |- ( i = k -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
|
| 146 | 145 | cbvralvw | |- ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 147 | 146 | biimpi | |- ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 148 | 147 | adantl | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 149 | crctprop | |- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 150 | 136 | fveq2i | |- ( P ` ( # ` F ) ) = ( P ` N ) |
| 151 | 150 | eqeq2i | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` N ) ) |
| 152 | 151 | biimpi | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P ` 0 ) = ( P ` N ) ) |
| 153 | 152 | eqcomd | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P ` N ) = ( P ` 0 ) ) |
| 154 | 153 | adantl | |- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` N ) = ( P ` 0 ) ) |
| 155 | 3 149 154 | 3syl | |- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
| 156 | 155 | ad2antrl | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) -> ( P ` N ) = ( P ` 0 ) ) |
| 157 | 156 | adantr | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( P ` N ) = ( P ` 0 ) ) |
| 158 | 143 7 6 4 144 148 157 | crctcshwlkn0lem7 | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 159 | 128 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) |
| 160 | 159 | raleqdv | |- ( ph -> ( A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 161 | 160 | ad2antrl | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) -> ( A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 162 | 161 | adantr | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 163 | 158 162 | mpbird | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) /\ A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 164 | 163 | ex | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 165 | 138 164 | biimtrid | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( ph /\ S =/= 0 ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 166 | 165 | ex | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( ( ph /\ S =/= 0 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) ) |
| 167 | 166 | com23 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( ( ph /\ S =/= 0 ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) ) |
| 168 | 167 | 3impia | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( ( ph /\ S =/= 0 ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 169 | 135 168 | mpcom | |- ( ( ph /\ S =/= 0 ) -> A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 170 | 13 132 169 | 3jca | |- ( ( ph /\ S =/= 0 ) -> ( H e. Word dom I /\ Q : ( 0 ... ( # ` H ) ) --> V /\ A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) |
| 171 | 1 2 3 4 5 6 7 | crctcshlem3 | |- ( ph -> ( G e. _V /\ H e. _V /\ Q e. _V ) ) |
| 172 | 171 | adantr | |- ( ( ph /\ S =/= 0 ) -> ( G e. _V /\ H e. _V /\ Q e. _V ) ) |
| 173 | 1 2 | iswlk | |- ( ( G e. _V /\ H e. _V /\ Q e. _V ) -> ( H ( Walks ` G ) Q <-> ( H e. Word dom I /\ Q : ( 0 ... ( # ` H ) ) --> V /\ A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) ) |
| 174 | 172 173 | syl | |- ( ( ph /\ S =/= 0 ) -> ( H ( Walks ` G ) Q <-> ( H e. Word dom I /\ Q : ( 0 ... ( # ` H ) ) --> V /\ A. j e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) ) |
| 175 | 170 174 | mpbird | |- ( ( ph /\ S =/= 0 ) -> H ( Walks ` G ) Q ) |