This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo1fzo0n0 | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo2 | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) | |
| 2 | elnnuz | ⊢ ( 𝐾 ∈ ℕ ↔ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 3 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℕ0 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 < 𝑁 ) → 𝐾 ∈ ℕ0 ) |
| 6 | nngt0 | ⊢ ( 𝐾 ∈ ℕ → 0 < 𝐾 ) | |
| 7 | 0red | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → 0 ∈ ℝ ) | |
| 8 | nnre | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → 𝐾 ∈ ℝ ) |
| 10 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 12 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 < 𝐾 ∧ 𝐾 < 𝑁 ) → 0 < 𝑁 ) ) | |
| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( ( 0 < 𝐾 ∧ 𝐾 < 𝑁 ) → 0 < 𝑁 ) ) |
| 14 | elnnz | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) | |
| 15 | 14 | simplbi2 | ⊢ ( 𝑁 ∈ ℤ → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 17 | 13 16 | syld | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( ( 0 < 𝐾 ∧ 𝐾 < 𝑁 ) → 𝑁 ∈ ℕ ) ) |
| 18 | 17 | exp4b | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ℕ → ( 0 < 𝐾 → ( 𝐾 < 𝑁 → 𝑁 ∈ ℕ ) ) ) ) |
| 19 | 18 | com13 | ⊢ ( 0 < 𝐾 → ( 𝐾 ∈ ℕ → ( 𝑁 ∈ ℤ → ( 𝐾 < 𝑁 → 𝑁 ∈ ℕ ) ) ) ) |
| 20 | 6 19 | mpcom | ⊢ ( 𝐾 ∈ ℕ → ( 𝑁 ∈ ℤ → ( 𝐾 < 𝑁 → 𝑁 ∈ ℕ ) ) ) |
| 21 | 20 | imp31 | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 22 | simpr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 < 𝑁 ) → 𝐾 < 𝑁 ) | |
| 23 | 5 21 22 | 3jca | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 < 𝑁 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 24 | 23 | exp31 | ⊢ ( 𝐾 ∈ ℕ → ( 𝑁 ∈ ℤ → ( 𝐾 < 𝑁 → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) ) ) |
| 25 | 2 24 | sylbir | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑁 ∈ ℤ → ( 𝐾 < 𝑁 → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) ) ) |
| 26 | 25 | 3imp | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 27 | elfzo0 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) | |
| 28 | 26 27 | sylibr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
| 29 | nnne0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ≠ 0 ) | |
| 30 | 2 29 | sylbir | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → 𝐾 ≠ 0 ) |
| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) → 𝐾 ≠ 0 ) |
| 32 | 28 31 | jca | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) → ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ≠ 0 ) ) |
| 33 | 1 32 | sylbi | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) → ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ≠ 0 ) ) |
| 34 | elnnne0 | ⊢ ( 𝐾 ∈ ℕ ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) ) | |
| 35 | nnge1 | ⊢ ( 𝐾 ∈ ℕ → 1 ≤ 𝐾 ) | |
| 36 | 34 35 | sylbir | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) → 1 ≤ 𝐾 ) |
| 37 | 36 | 3ad2antl1 | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ∧ 𝐾 ≠ 0 ) → 1 ≤ 𝐾 ) |
| 38 | simpl3 | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ∧ 𝐾 ≠ 0 ) → 𝐾 < 𝑁 ) | |
| 39 | nn0z | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) | |
| 40 | 39 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
| 41 | 1zzd | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → 1 ∈ ℤ ) | |
| 42 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 44 | 40 41 43 | 3jca | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) → ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ∧ 𝐾 ≠ 0 ) → ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 47 | elfzo | ⊢ ( ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ↔ ( 1 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ∧ 𝐾 ≠ 0 ) → ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ↔ ( 1 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ) ) |
| 49 | 37 38 48 | mpbir2and | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ∧ 𝐾 ≠ 0 ) → 𝐾 ∈ ( 1 ..^ 𝑁 ) ) |
| 50 | 27 49 | sylanb | ⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ≠ 0 ) → 𝐾 ∈ ( 1 ..^ 𝑁 ) ) |
| 51 | 33 50 | impbii | ⊢ ( 𝐾 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐾 ≠ 0 ) ) |