This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be/represent a walk. (Contributed by AV, 30-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wksfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | iswlk | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wksfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | df-br | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) ) | |
| 4 | 1 2 | wksfval | ⊢ ( 𝐺 ∈ 𝑊 → ( Walks ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( Walks ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) |
| 6 | 5 | eleq2d | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) ↔ 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) ) |
| 7 | 3 6 | bitrid | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) ) |
| 8 | eleq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼 ) ) |
| 10 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) | |
| 11 | fveq2 | ⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 0 ... ( ♯ ‘ 𝑓 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 0 ... ( ♯ ‘ 𝑓 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 14 | 10 13 | feq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 15 | 11 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 17 | fveq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) | |
| 18 | fveq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 21 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 23 | 17 | sneqd | ⊢ ( 𝑝 = 𝑃 → { ( 𝑝 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) } ) |
| 24 | 22 23 | eqeqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 25 | 17 18 | preq12d | ⊢ ( 𝑝 = 𝑃 → { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 27 | 22 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 28 | 26 27 | sseq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 29 | 20 24 28 | ifpbi123d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 30 | 16 29 | raleqbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 31 | 9 14 30 | 3anbi123d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 32 | 31 | opelopabga | ⊢ ( ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 33 | 32 | 3adant1 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 34 | 7 33 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |