This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| Assertion | crctcshlem2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctiswlk | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 8 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 9 | 3 7 8 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 | elfzoelz | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 12 | cshwlen | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑆 ∈ ℤ ) → ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) = ( ♯ ‘ 𝐹 ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) = ( ♯ ‘ 𝐹 ) ) |
| 14 | 6 | fveq2i | ⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 cyclShift 𝑆 ) ) |
| 15 | 13 14 4 | 3eqtr4g | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |