This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| Assertion | crctcshlem3 | ⊢ ( 𝜑 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 8 | crctistrl | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 9 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 10 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 11 | simp1 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → 𝐺 ∈ V ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐺 ∈ V ) |
| 13 | 3 8 12 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 14 | 6 | ovexi | ⊢ 𝐻 ∈ V |
| 15 | 14 | a1i | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 16 | ovex | ⊢ ( 0 ... 𝑁 ) ∈ V | |
| 17 | 16 | mptex | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) ∈ V |
| 18 | 7 17 | eqeltri | ⊢ 𝑄 ∈ V |
| 19 | 18 | a1i | ⊢ ( 𝜑 → 𝑄 ∈ V ) |
| 20 | 13 15 19 | 3jca | ⊢ ( 𝜑 → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |