This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a walk <. H , Q >. . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| Assertion | crctcshwlk | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | crctcshlem4 | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |
| 9 | crctistrl | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 10 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 12 | breq12 | ⊢ ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ↔ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) | |
| 13 | 11 12 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) ) |
| 15 | 8 14 | mpd | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
| 16 | 1 2 3 4 5 6 7 | crctcshwlkn0 | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
| 17 | 15 16 | pm2.61dane | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |