This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) Avoid ax-mulf . (Revised by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | ovmpot | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( 1 · 𝑥 ) ) | |
| 3 | 2 | eqcomd | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) ) |
| 4 | 1 3 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) ) |
| 5 | mullid | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) | |
| 6 | 4 5 | eqtr3d | ⊢ ( 𝑥 ∈ ℂ → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ) |
| 7 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = ( 𝑥 · 1 ) ) | |
| 8 | 1 7 | mpan2 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = ( 𝑥 · 1 ) ) |
| 9 | mulrid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) | |
| 10 | 8 9 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) |
| 11 | 6 10 | jca | ⊢ ( 𝑥 ∈ ℂ → ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) |
| 12 | 11 | rgen | ⊢ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) |
| 13 | 1 12 | pm3.2i | ⊢ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) |
| 14 | cnring | ⊢ ℂfld ∈ Ring | |
| 15 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 16 | mpocnfldmul | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) | |
| 17 | eqid | ⊢ ( 1r ‘ ℂfld ) = ( 1r ‘ ℂfld ) | |
| 18 | 15 16 17 | isringid | ⊢ ( ℂfld ∈ Ring → ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) ) |
| 19 | 14 18 | ax-mp | ⊢ ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) |
| 20 | 13 19 | mpbi | ⊢ ( 1r ‘ ℂfld ) = 1 |
| 21 | 20 | eqcomi | ⊢ 1 = ( 1r ‘ ℂfld ) |