This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014) (Proof shortened by AV, 7-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| Assertion | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| 2 | ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 3 | simp1 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ⊆ 𝐴 ) | |
| 4 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 6 | 1 2 | ressid2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑊 ) ) |
| 8 | 2 5 7 | 3eqtr4a | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 9 | 8 | 3expib | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) ) |
| 10 | simp2 | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ V ) | |
| 11 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 12 | 11 | inex2 | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ V |
| 13 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 14 | 13 | setsid | ⊢ ( ( 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 15 | 10 12 14 | sylancl | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 16 | 1 2 | ressval2 | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) ) |
| 18 | 15 17 | eqtr4d | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 19 | 18 | 3expib | ⊢ ( ¬ 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) ) |
| 20 | 9 19 | pm2.61i | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 21 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 22 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) | |
| 23 | 2 22 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐵 = ∅ ) |
| 24 | 23 | ineq2d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ ∅ ) ) |
| 25 | 21 24 22 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑊 ) ) |
| 26 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 27 | 26 | eqcomi | ⊢ ( Base ‘ ∅ ) = ∅ |
| 28 | reldmress | ⊢ Rel dom ↾s | |
| 29 | 27 1 28 | oveqprc | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑅 ) ) |
| 30 | 25 29 | eqtrd | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 31 | 30 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 32 | 20 31 | pm2.61ian | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |