This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ressid.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| Assertion | ressinbas | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressid.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ V ) | |
| 3 | eqid | ⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) | |
| 4 | 3 1 | ressid2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
| 5 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 6 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 7 | dfss2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) | |
| 8 | 7 | biimpi | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∩ 𝐴 ) = 𝐵 ) |
| 9 | 6 8 | eqtrid | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
| 10 | 5 9 | sseqtrrid | ⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 11 | elex | ⊢ ( 𝑊 ∈ V → 𝑊 ∈ V ) | |
| 12 | inex1g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 13 | eqid | ⊢ ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) | |
| 14 | 13 1 | ressid2 | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = 𝑊 ) |
| 15 | 10 11 12 14 | syl3an | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = 𝑊 ) |
| 16 | 4 15 | eqtr4d | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 17 | 16 | 3expb | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 18 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 ∩ 𝐵 ) ) | |
| 19 | inidm | ⊢ ( 𝐵 ∩ 𝐵 ) = 𝐵 | |
| 20 | 19 | ineq2i | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) |
| 21 | 18 20 | eqtr2i | ⊢ ( 𝐴 ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) |
| 22 | 21 | opeq2i | ⊢ 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 |
| 23 | 22 | oveq2i | ⊢ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 ) |
| 24 | 3 1 | ressval2 | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ 𝐵 ) 〉 ) ) |
| 25 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 26 | sstr | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
| 27 | 25 26 | mpan2 | ⊢ ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
| 28 | 27 | con3i | ⊢ ( ¬ 𝐵 ⊆ 𝐴 → ¬ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 29 | 13 1 | ressval2 | ⊢ ( ( ¬ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 ) ) |
| 30 | 28 11 12 29 | syl3an | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ 𝐵 ) 〉 ) ) |
| 31 | 23 24 30 | 3eqtr4a | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 32 | 31 | 3expb | ⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 33 | 17 32 | pm2.61ian | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 34 | reldmress | ⊢ Rel dom ↾s | |
| 35 | 34 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 36 | 34 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 37 | 35 36 | eqtr4d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 39 | 33 38 | pm2.61ian | ⊢ ( 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 40 | 2 39 | syl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |