This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subg0.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| subg0.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | subg0 | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | subg0.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 1 3 | ressplusg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 5 | 4 | oveqd | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) ) |
| 6 | 1 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 9 | 7 8 | grpidcl | ⊢ ( 𝐻 ∈ Grp → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 12 | 7 11 8 | grplid | ⊢ ( ( 𝐻 ∈ Grp ∧ ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 13 | 6 10 12 | syl2anc | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐻 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 14 | 5 13 | eqtrd | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
| 15 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 17 | 16 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 | 1 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 19 | 10 18 | eleqtrrd | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ 𝑆 ) |
| 20 | 17 19 | sseldd | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
| 21 | 16 3 2 | grpid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ↔ 0 = ( 0g ‘ 𝐻 ) ) ) |
| 22 | 15 20 21 | syl2anc | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ( ( 0g ‘ 𝐻 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ↔ 0 = ( 0g ‘ 𝐻 ) ) ) |
| 23 | 14 22 | mpbid | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 = ( 0g ‘ 𝐻 ) ) |