This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof shortened by AV, 12-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| issubrg.i | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | issubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | issubrg.i | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | df-subrg | ⊢ SubRing = ( 𝑟 ∈ Ring ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ∧ ( 1r ‘ 𝑟 ) ∈ 𝑠 ) } ) | |
| 4 | 3 | mptrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 5 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) → 𝑅 ∈ Ring ) | |
| 6 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 8 | 7 | pweqd | ⊢ ( 𝑟 = 𝑅 → 𝒫 ( Base ‘ 𝑟 ) = 𝒫 𝐵 ) |
| 9 | oveq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑠 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ↔ ( 𝑅 ↾s 𝑠 ) ∈ Ring ) ) |
| 11 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) | |
| 12 | 11 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 1r ‘ 𝑟 ) ∈ 𝑠 ↔ 1 ∈ 𝑠 ) ) |
| 14 | 10 13 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ∧ ( 1r ‘ 𝑟 ) ∈ 𝑠 ) ↔ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) ) ) |
| 15 | 8 14 | rabeqbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( ( 𝑟 ↾s 𝑠 ) ∈ Ring ∧ ( 1r ‘ 𝑟 ) ∈ 𝑠 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ) |
| 16 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 16 | pwex | ⊢ 𝒫 𝐵 ∈ V |
| 18 | 17 | rabex | ⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ∈ V |
| 19 | 15 3 18 | fvmpt | ⊢ ( 𝑅 ∈ Ring → ( SubRing ‘ 𝑅 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ) |
| 20 | 19 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ) ) |
| 21 | oveq2 | ⊢ ( 𝑠 = 𝐴 → ( 𝑅 ↾s 𝑠 ) = ( 𝑅 ↾s 𝐴 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑠 = 𝐴 → ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ↔ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ) |
| 23 | eleq2 | ⊢ ( 𝑠 = 𝐴 → ( 1 ∈ 𝑠 ↔ 1 ∈ 𝐴 ) ) | |
| 24 | 22 23 | anbi12d | ⊢ ( 𝑠 = 𝐴 → ( ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ) |
| 25 | 24 | elrab | ⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ↔ ( 𝐴 ∈ 𝒫 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ) |
| 26 | 16 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) |
| 27 | 26 | anbi1i | ⊢ ( ( 𝐴 ∈ 𝒫 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ) |
| 28 | an12 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 1 ∈ 𝐴 ) ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) | |
| 29 | 25 27 28 | 3bitri | ⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |
| 30 | ibar | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ↔ ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ) ) | |
| 31 | 30 | anbi1d | ⊢ ( 𝑅 ∈ Ring → ( ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) ) |
| 32 | 29 31 | bitrid | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 𝑅 ↾s 𝑠 ) ∈ Ring ∧ 1 ∈ 𝑠 ) } ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) ) |
| 33 | 20 32 | bitrd | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) ) |
| 34 | 4 5 33 | pm5.21nii | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |