This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | issubg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | df-subg | ⊢ SubGrp = ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ Grp } ) | |
| 3 | 2 | mptrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 4 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) → 𝐺 ∈ Grp ) | |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 7 | 6 | pweqd | ⊢ ( 𝑤 = 𝐺 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝐵 ) |
| 8 | oveq1 | ⊢ ( 𝑤 = 𝐺 → ( 𝑤 ↾s 𝑠 ) = ( 𝐺 ↾s 𝑠 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑤 = 𝐺 → ( ( 𝑤 ↾s 𝑠 ) ∈ Grp ↔ ( 𝐺 ↾s 𝑠 ) ∈ Grp ) ) |
| 10 | 7 9 | rabeqbidv | ⊢ ( 𝑤 = 𝐺 → { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ Grp } = { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ) |
| 11 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 12 | 11 | pwex | ⊢ 𝒫 𝐵 ∈ V |
| 13 | 12 | rabex | ⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ∈ V |
| 14 | 10 2 13 | fvmpt | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ) ) |
| 16 | oveq2 | ⊢ ( 𝑠 = 𝑆 → ( 𝐺 ↾s 𝑠 ) = ( 𝐺 ↾s 𝑆 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝐺 ↾s 𝑠 ) ∈ Grp ↔ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| 18 | 17 | elrab | ⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| 19 | 11 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 20 | 19 | anbi1i | ⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| 21 | 18 20 | bitri | ⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| 22 | 15 21 | bitrdi | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) |
| 23 | ibar | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) ) | |
| 24 | 22 23 | bitrd | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) ) |
| 25 | 3anass | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) | |
| 26 | 24 25 | bitr4di | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) |
| 27 | 3 4 26 | pm5.21nii | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |