This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sq01 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 2 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 3 | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( 𝐴 · 1 ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ) ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | mulcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ↔ 𝐴 = 1 ) ) | |
| 9 | 7 8 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ↔ 𝐴 = 1 ) ) |
| 10 | 9 | anabss5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · 𝐴 ) = ( 𝐴 · 1 ) ↔ 𝐴 = 1 ) ) |
| 11 | 6 10 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ 𝐴 = 1 ) ) |
| 12 | 11 | biimpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ 2 ) = 𝐴 → 𝐴 = 1 ) ) |
| 13 | 12 | impancom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) = 𝐴 ) → ( 𝐴 ≠ 0 → 𝐴 = 1 ) ) |
| 14 | 1 13 | biimtrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) = 𝐴 ) → ( ¬ 𝐴 = 0 → 𝐴 = 1 ) ) |
| 15 | 14 | orrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) = 𝐴 ) → ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 → ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |
| 17 | sq0 | ⊢ ( 0 ↑ 2 ) = 0 | |
| 18 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = ( 0 ↑ 2 ) ) | |
| 19 | id | ⊢ ( 𝐴 = 0 → 𝐴 = 0 ) | |
| 20 | 17 18 19 | 3eqtr4a | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = 𝐴 ) |
| 21 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 22 | oveq1 | ⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ) | |
| 23 | id | ⊢ ( 𝐴 = 1 → 𝐴 = 1 ) | |
| 24 | 21 22 23 | 3eqtr4a | ⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = 𝐴 ) |
| 25 | 20 24 | jaoi | ⊢ ( ( 𝐴 = 0 ∨ 𝐴 = 1 ) → ( 𝐴 ↑ 2 ) = 𝐴 ) |
| 26 | 16 25 | impbid1 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = 𝐴 ↔ ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |