This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for division. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 3 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( ( 𝐵 / 𝐶 ) · 𝐴 ) ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( ( 𝐵 / 𝐶 ) · 𝐴 ) ) |
| 5 | 4 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( ( 𝐵 / 𝐶 ) · 𝐴 ) ) |
| 6 | div13 | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 / 𝐶 ) · 𝐴 ) = ( ( 𝐴 / 𝐶 ) · 𝐵 ) ) | |
| 7 | 6 | 3comr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 / 𝐶 ) · 𝐴 ) = ( ( 𝐴 / 𝐶 ) · 𝐵 ) ) |
| 8 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) | |
| 9 | 8 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 10 | mulcom | ⊢ ( ( ( 𝐴 / 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 / 𝐶 ) · 𝐵 ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) ) | |
| 11 | 9 10 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 / 𝐶 ) · 𝐵 ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) ) |
| 12 | 11 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) · 𝐵 ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) ) |
| 13 | 5 7 12 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) ) |