This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos1bnd | ⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 2 / 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 2 | 1 | oveq1i | ⊢ ( ( 1 ↑ 2 ) / 3 ) = ( 1 / 3 ) |
| 3 | 2 | oveq2i | ⊢ ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) = ( 2 · ( 1 / 3 ) ) |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | 3cn | ⊢ 3 ∈ ℂ | |
| 6 | 3ne0 | ⊢ 3 ≠ 0 | |
| 7 | 4 5 6 | divreci | ⊢ ( 2 / 3 ) = ( 2 · ( 1 / 3 ) ) |
| 8 | 3 7 | eqtr4i | ⊢ ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) = ( 2 / 3 ) |
| 9 | 8 | oveq2i | ⊢ ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) = ( 1 − ( 2 / 3 ) ) |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | 4 5 6 | divcli | ⊢ ( 2 / 3 ) ∈ ℂ |
| 12 | 5 6 | reccli | ⊢ ( 1 / 3 ) ∈ ℂ |
| 13 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 14 | 13 | oveq1i | ⊢ ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
| 15 | 5 6 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 16 | 4 10 5 6 | divdiri | ⊢ ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 17 | 14 15 16 | 3eqtr3ri | ⊢ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
| 18 | 10 11 12 17 | subaddrii | ⊢ ( 1 − ( 2 / 3 ) ) = ( 1 / 3 ) |
| 19 | 9 18 | eqtri | ⊢ ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) = ( 1 / 3 ) |
| 20 | 1re | ⊢ 1 ∈ ℝ | |
| 21 | 0lt1 | ⊢ 0 < 1 | |
| 22 | 1le1 | ⊢ 1 ≤ 1 | |
| 23 | 0xr | ⊢ 0 ∈ ℝ* | |
| 24 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 1 ∈ ( 0 (,] 1 ) ↔ ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) ) ) | |
| 25 | 23 20 24 | mp2an | ⊢ ( 1 ∈ ( 0 (,] 1 ) ↔ ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) ) |
| 26 | cos01bnd | ⊢ ( 1 ∈ ( 0 (,] 1 ) → ( ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) ) ) | |
| 27 | 25 26 | sylbir | ⊢ ( ( 1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1 ) → ( ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) ) ) |
| 28 | 20 21 22 27 | mp3an | ⊢ ( ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) ) |
| 29 | 28 | simpli | ⊢ ( 1 − ( 2 · ( ( 1 ↑ 2 ) / 3 ) ) ) < ( cos ‘ 1 ) |
| 30 | 19 29 | eqbrtrri | ⊢ ( 1 / 3 ) < ( cos ‘ 1 ) |
| 31 | 28 | simpri | ⊢ ( cos ‘ 1 ) < ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) |
| 32 | 2 | oveq2i | ⊢ ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
| 33 | 10 12 11 | subadd2i | ⊢ ( ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) ↔ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) |
| 34 | 17 33 | mpbir | ⊢ ( 1 − ( 1 / 3 ) ) = ( 2 / 3 ) |
| 35 | 32 34 | eqtri | ⊢ ( 1 − ( ( 1 ↑ 2 ) / 3 ) ) = ( 2 / 3 ) |
| 36 | 31 35 | breqtri | ⊢ ( cos ‘ 1 ) < ( 2 / 3 ) |
| 37 | 30 36 | pm3.2i | ⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 2 / 3 ) ) |