This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008) (Proof shortened by SN, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfpm6th | ⊢ ( ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) ∧ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | ⊢ 3 ∈ ℂ | |
| 2 | 3ne0 | ⊢ 3 ≠ 0 | |
| 3 | 1 2 | reccli | ⊢ ( 1 / 3 ) ∈ ℂ |
| 4 | 6cn | ⊢ 6 ∈ ℂ | |
| 5 | 6re | ⊢ 6 ∈ ℝ | |
| 6 | 6pos | ⊢ 0 < 6 | |
| 7 | 5 6 | gt0ne0ii | ⊢ 6 ≠ 0 |
| 8 | 4 7 | reccli | ⊢ ( 1 / 6 ) ∈ ℂ |
| 9 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 10 | 3 9 | pncan3i | ⊢ ( ( 1 / 3 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( 1 / 2 ) |
| 11 | halfthird | ⊢ ( ( 1 / 2 ) − ( 1 / 3 ) ) = ( 1 / 6 ) | |
| 12 | 11 | oveq2i | ⊢ ( ( 1 / 3 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( ( 1 / 3 ) + ( 1 / 6 ) ) |
| 13 | 10 12 | eqtr3i | ⊢ ( 1 / 2 ) = ( ( 1 / 3 ) + ( 1 / 6 ) ) |
| 14 | 3 8 13 | mvrraddi | ⊢ ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) |
| 15 | 11 | oveq2i | ⊢ ( ( 1 / 2 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( ( 1 / 2 ) + ( 1 / 6 ) ) |
| 16 | 9 9 3 | addsubassi | ⊢ ( ( ( 1 / 2 ) + ( 1 / 2 ) ) − ( 1 / 3 ) ) = ( ( 1 / 2 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) |
| 17 | 2cn | ⊢ 2 ∈ ℂ | |
| 18 | 17 1 2 | divcli | ⊢ ( 2 / 3 ) ∈ ℂ |
| 19 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 20 | 2halves | ⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 22 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 23 | 22 | oveq1i | ⊢ ( ( 2 + 1 ) / 3 ) = ( 3 / 3 ) |
| 24 | 1 2 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 25 | 23 24 | eqtri | ⊢ ( ( 2 + 1 ) / 3 ) = 1 |
| 26 | 17 19 1 2 | divdiri | ⊢ ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 27 | 21 25 26 | 3eqtr2i | ⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 28 | 18 3 27 | mvrraddi | ⊢ ( ( ( 1 / 2 ) + ( 1 / 2 ) ) − ( 1 / 3 ) ) = ( 2 / 3 ) |
| 29 | 16 28 | eqtr3i | ⊢ ( ( 1 / 2 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( 2 / 3 ) |
| 30 | 15 29 | eqtr3i | ⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
| 31 | 14 30 | pm3.2i | ⊢ ( ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) ∧ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |