This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopge0 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) |
| 4 | normge0 | ⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
| 6 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 7 | 0le1 | ⊢ 0 ≤ 1 | |
| 8 | 6 7 | eqbrtri | ⊢ ( normℎ ‘ 0ℎ ) ≤ 1 |
| 9 | nmoplb | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0ℎ ∈ ℋ ∧ ( normℎ ‘ 0ℎ ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normop ‘ 𝑇 ) ) | |
| 10 | 1 8 9 | mp3an23 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 11 | normcl | ⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ ) |
| 13 | 12 | rexrd | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ) |
| 14 | nmopxr | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) | |
| 15 | 0xr | ⊢ 0 ∈ ℝ* | |
| 16 | xrletr | ⊢ ( ( 0 ∈ ℝ* ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ∧ ( normop ‘ 𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normop ‘ 𝑇 ) ) → 0 ≤ ( normop ‘ 𝑇 ) ) ) | |
| 17 | 15 16 | mp3an1 | ⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ∧ ( normop ‘ 𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normop ‘ 𝑇 ) ) → 0 ≤ ( normop ‘ 𝑇 ) ) ) |
| 18 | 13 14 17 | syl2anc | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normop ‘ 𝑇 ) ) → 0 ≤ ( normop ‘ 𝑇 ) ) ) |
| 19 | 5 10 18 | mp2and | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) |