This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every continuous linear operator has an adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadj.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadj.2 | ⊢ 𝑇 ∈ ContOp | ||
| Assertion | cnlnadji | ⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadj.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadj.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | eqid | ⊢ ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) | |
| 4 | oveq2 | ⊢ ( 𝑓 = 𝑤 → ( 𝑣 ·ih 𝑓 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝑓 = 𝑤 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑓 = 𝑤 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 7 | 6 | cbvriotavw | ⊢ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 8 | eqid | ⊢ ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) | |
| 9 | 1 2 3 7 8 | cnlnadjlem9 | ⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |