This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F is continuous. (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | ||
| Assertion | cnlnadjlem8 | ⊢ 𝐹 ∈ ContOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 6 | 1 2 | nmcopexi | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 7 | 1 2 3 4 5 | cnlnadjlem7 | ⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
| 8 | 7 | rgen | ⊢ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( 𝑥 · ( normℎ ‘ 𝑧 ) ) = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
| 13 | 6 8 12 | mp2an | ⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) |
| 14 | 1 2 3 4 5 | cnlnadjlem6 | ⊢ 𝐹 ∈ LinOp |
| 15 | 14 | lnopconi | ⊢ ( 𝐹 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( normℎ ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
| 16 | 13 15 | mpbir | ⊢ 𝐹 ∈ ContOp |