This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . The values of auxiliary function F are vectors. (Contributed by NM, 17-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | ||
| Assertion | cnlnadjlem4 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ‘ 𝐴 ) ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 6 | 1 2 3 4 | cnlnadjlem3 | ⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ ) |
| 7 | 5 6 | fmpti | ⊢ 𝐹 : ℋ ⟶ ℋ |
| 8 | 7 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ‘ 𝐴 ) ∈ ℋ ) |