This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcopex.1 | ⊢ 𝑇 ∈ LinOp | |
| nmcopex.2 | ⊢ 𝑇 ∈ ContOp | ||
| Assertion | nmcoplbi | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | nmcopex.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | 0le0 | ⊢ 0 ≤ 0 | |
| 4 | 3 | a1i | ⊢ ( 𝐴 = 0ℎ → 0 ≤ 0 ) |
| 5 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) | |
| 6 | 1 | lnop0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = 0ℎ ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ 0ℎ ) ) |
| 9 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = 0 ) |
| 11 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) | |
| 12 | 11 9 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = 0 ) |
| 13 | 12 | oveq2d | ⊢ ( 𝐴 = 0ℎ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ 𝑇 ) · 0 ) ) |
| 14 | 1 2 | nmcopexi | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 15 | 14 | recni | ⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 16 | 15 | mul01i | ⊢ ( ( normop ‘ 𝑇 ) · 0 ) = 0 |
| 17 | 13 16 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = 0 ) |
| 18 | 4 10 17 | 3brtr4d | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 20 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 22 | normne0 | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) | |
| 23 | 22 | biimpar | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
| 24 | 21 23 | rereccld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 25 | normgt0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) | |
| 26 | 25 | biimpa | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
| 27 | 21 26 | recgt0d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 28 | 0re | ⊢ 0 ∈ ℝ | |
| 29 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) | |
| 30 | 28 29 | mpan | ⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
| 31 | 24 27 30 | sylc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 32 | 24 31 | absidd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 34 | 24 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
| 35 | simpl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) | |
| 36 | 1 | lnopmuli | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 37 | 34 35 36 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 39 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 40 | 39 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 41 | 40 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 42 | norm-iii | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) | |
| 43 | 34 41 42 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 44 | 38 43 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 45 | normcl | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) | |
| 46 | 40 45 | syl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 48 | 47 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
| 49 | 21 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 50 | 48 49 23 | divrec2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 51 | 33 44 50 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
| 52 | hvmulcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) | |
| 53 | 34 35 52 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
| 54 | normcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
| 56 | norm1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) | |
| 57 | eqle | ⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) | |
| 58 | 55 56 57 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
| 59 | nmoplb | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) | |
| 60 | 39 59 | mp3an1 | ⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 61 | 53 58 60 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 62 | 51 61 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 63 | 14 | a1i | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 64 | ledivmul2 | ⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) | |
| 65 | 47 63 21 26 64 | syl112anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 66 | 62 65 | mpbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 67 | 19 66 | pm2.61dane | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |