This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F is an adjoint of T (later, we will show it is unique). (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | ||
| Assertion | cnlnadjlem5 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 ℋ | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 𝑓 | |
| 9 | nfcv | ⊢ Ⅎ 𝑦 ·ih | |
| 10 | nfmpt1 | ⊢ Ⅎ 𝑦 ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 11 | 5 10 | nfcxfr | ⊢ Ⅎ 𝑦 𝐹 |
| 12 | 11 6 | nffv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝐴 ) |
| 13 | 8 9 12 | nfov | ⊢ Ⅎ 𝑦 ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) |
| 14 | 13 | nfeq2 | ⊢ Ⅎ 𝑦 ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) |
| 15 | 7 14 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) |
| 16 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 21 | riotaex | ⊢ ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ V | |
| 22 | 4 21 | eqeltri | ⊢ 𝐵 ∈ V |
| 23 | 5 | fvmpt2 | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑦 ) = 𝐵 ) |
| 24 | 22 23 | mpan2 | ⊢ ( 𝑦 ∈ ℋ → ( 𝐹 ‘ 𝑦 ) = 𝐵 ) |
| 25 | fveq2 | ⊢ ( 𝑣 = 𝑓 → ( 𝑇 ‘ 𝑣 ) = ( 𝑇 ‘ 𝑓 ) ) | |
| 26 | 25 | oveq1d | ⊢ ( 𝑣 = 𝑓 → ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) ) |
| 27 | oveq1 | ⊢ ( 𝑣 = 𝑓 → ( 𝑣 ·ih 𝑤 ) = ( 𝑓 ·ih 𝑤 ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑣 = 𝑓 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
| 29 | 28 | cbvralvw | ⊢ ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) |
| 30 | 29 | a1i | ⊢ ( 𝑤 ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
| 31 | 1 2 3 | cnlnadjlem1 | ⊢ ( 𝑓 ∈ ℋ → ( 𝐺 ‘ 𝑓 ) = ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) ) |
| 32 | 31 | eqeq1d | ⊢ ( 𝑓 ∈ ℋ → ( ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
| 33 | 32 | ralbiia | ⊢ ( ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ) |
| 34 | 30 33 | bitr4di | ⊢ ( 𝑤 ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ) |
| 35 | 34 | riotabiia | ⊢ ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) |
| 36 | 4 35 | eqtri | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) |
| 37 | 1 2 3 | cnlnadjlem2 | ⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
| 38 | elin | ⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ ( LinFn ∩ ContFn ) ) |
| 40 | riesz4 | ⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) | |
| 41 | riotacl2 | ⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) → ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) | |
| 42 | 39 40 41 | 3syl | ⊢ ( 𝑦 ∈ ℋ → ( ℩ 𝑤 ∈ ℋ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
| 43 | 36 42 | eqeltrid | ⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
| 44 | 24 43 | eqeltrd | ⊢ ( 𝑦 ∈ ℋ → ( 𝐹 ‘ 𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ) |
| 45 | oveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( 𝑓 ·ih 𝑤 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 47 | 46 | ralbidv | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 48 | 33 47 | bitrid | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) ↔ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 49 | 48 | elrab | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℋ ∧ ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 | 49 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 𝑤 ∈ ℋ ∣ ∀ 𝑓 ∈ ℋ ( 𝐺 ‘ 𝑓 ) = ( 𝑓 ·ih 𝑤 ) } → ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) |
| 51 | 44 50 | syl | ⊢ ( 𝑦 ∈ ℋ → ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝑦 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝑦 ) ) ) |
| 52 | 6 15 20 51 | vtoclgaf | ⊢ ( 𝐴 ∈ ℋ → ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 53 | fveq2 | ⊢ ( 𝑓 = 𝐶 → ( 𝑇 ‘ 𝑓 ) = ( 𝑇 ‘ 𝐶 ) ) | |
| 54 | 53 | oveq1d | ⊢ ( 𝑓 = 𝐶 → ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) ) |
| 55 | oveq1 | ⊢ ( 𝑓 = 𝐶 → ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) | |
| 56 | 54 55 | eqeq12d | ⊢ ( 𝑓 = 𝐶 → ( ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ↔ ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 57 | 56 | rspccva | ⊢ ( ( ∀ 𝑓 ∈ ℋ ( ( 𝑇 ‘ 𝑓 ) ·ih 𝐴 ) = ( 𝑓 ·ih ( 𝐹 ‘ 𝐴 ) ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |
| 58 | 52 57 | sylan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐶 ) ·ih 𝐴 ) = ( 𝐶 ·ih ( 𝐹 ‘ 𝐴 ) ) ) |