This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law. (Contributed by NM, 8-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐶 · 𝐵 ) ) ) |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐶 · 𝐵 ) ) ) |
| 4 | mulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) | |
| 5 | mulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) · 𝐵 ) = ( 𝐴 · ( 𝐶 · 𝐵 ) ) ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) · 𝐵 ) = ( 𝐴 · ( 𝐶 · 𝐵 ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) · 𝐵 ) ) |