This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom3 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | |- S = dom ( _om CNF A ) |
|
| cnfcom.a | |- ( ph -> A e. On ) |
||
| cnfcom.b | |- ( ph -> B e. ( _om ^o A ) ) |
||
| cnfcom.f | |- F = ( `' ( _om CNF A ) ` B ) |
||
| cnfcom.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cnfcom.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
||
| cnfcom.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
||
| cnfcom.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
||
| cnfcom.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
||
| cnfcom.w | |- W = ( G ` U. dom G ) |
||
| cnfcom3.1 | |- ( ph -> _om C_ B ) |
||
| Assertion | cnfcom3lem | |- ( ph -> W e. ( On \ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | |- S = dom ( _om CNF A ) |
|
| 2 | cnfcom.a | |- ( ph -> A e. On ) |
|
| 3 | cnfcom.b | |- ( ph -> B e. ( _om ^o A ) ) |
|
| 4 | cnfcom.f | |- F = ( `' ( _om CNF A ) ` B ) |
|
| 5 | cnfcom.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 6 | cnfcom.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
|
| 7 | cnfcom.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
|
| 8 | cnfcom.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
|
| 9 | cnfcom.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
|
| 10 | cnfcom.w | |- W = ( G ` U. dom G ) |
|
| 11 | cnfcom3.1 | |- ( ph -> _om C_ B ) |
|
| 12 | suppssdm | |- ( F supp (/) ) C_ dom F |
|
| 13 | omelon | |- _om e. On |
|
| 14 | 13 | a1i | |- ( ph -> _om e. On ) |
| 15 | 1 14 2 | cantnff1o | |- ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) |
| 16 | f1ocnv | |- ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) |
|
| 17 | f1of | |- ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
|
| 18 | 15 16 17 | 3syl | |- ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
| 19 | 18 3 | ffvelcdmd | |- ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) |
| 20 | 4 19 | eqeltrid | |- ( ph -> F e. S ) |
| 21 | 1 14 2 | cantnfs | |- ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) |
| 22 | 20 21 | mpbid | |- ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) |
| 23 | 22 | simpld | |- ( ph -> F : A --> _om ) |
| 24 | 12 23 | fssdm | |- ( ph -> ( F supp (/) ) C_ A ) |
| 25 | ovex | |- ( F supp (/) ) e. _V |
|
| 26 | 5 | oion | |- ( ( F supp (/) ) e. _V -> dom G e. On ) |
| 27 | 25 26 | ax-mp | |- dom G e. On |
| 28 | 27 | elexi | |- dom G e. _V |
| 29 | 28 | uniex | |- U. dom G e. _V |
| 30 | 29 | sucid | |- U. dom G e. suc U. dom G |
| 31 | peano1 | |- (/) e. _om |
|
| 32 | 31 | a1i | |- ( ph -> (/) e. _om ) |
| 33 | 11 32 | sseldd | |- ( ph -> (/) e. B ) |
| 34 | 1 2 3 4 5 6 7 8 9 10 33 | cnfcom2lem | |- ( ph -> dom G = suc U. dom G ) |
| 35 | 30 34 | eleqtrrid | |- ( ph -> U. dom G e. dom G ) |
| 36 | 5 | oif | |- G : dom G --> ( F supp (/) ) |
| 37 | 36 | ffvelcdmi | |- ( U. dom G e. dom G -> ( G ` U. dom G ) e. ( F supp (/) ) ) |
| 38 | 35 37 | syl | |- ( ph -> ( G ` U. dom G ) e. ( F supp (/) ) ) |
| 39 | 24 38 | sseldd | |- ( ph -> ( G ` U. dom G ) e. A ) |
| 40 | onelon | |- ( ( A e. On /\ ( G ` U. dom G ) e. A ) -> ( G ` U. dom G ) e. On ) |
|
| 41 | 2 39 40 | syl2anc | |- ( ph -> ( G ` U. dom G ) e. On ) |
| 42 | 10 41 | eqeltrid | |- ( ph -> W e. On ) |
| 43 | oecl | |- ( ( _om e. On /\ A e. On ) -> ( _om ^o A ) e. On ) |
|
| 44 | 13 2 43 | sylancr | |- ( ph -> ( _om ^o A ) e. On ) |
| 45 | onelon | |- ( ( ( _om ^o A ) e. On /\ B e. ( _om ^o A ) ) -> B e. On ) |
|
| 46 | 44 3 45 | syl2anc | |- ( ph -> B e. On ) |
| 47 | ontri1 | |- ( ( _om e. On /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) |
|
| 48 | 13 46 47 | sylancr | |- ( ph -> ( _om C_ B <-> -. B e. _om ) ) |
| 49 | 11 48 | mpbid | |- ( ph -> -. B e. _om ) |
| 50 | 4 | fveq2i | |- ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) |
| 51 | f1ocnvfv2 | |- ( ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) /\ B e. ( _om ^o A ) ) -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) |
|
| 52 | 15 3 51 | syl2anc | |- ( ph -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) |
| 53 | 50 52 | eqtrid | |- ( ph -> ( ( _om CNF A ) ` F ) = B ) |
| 54 | 53 | adantr | |- ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) = B ) |
| 55 | 13 | a1i | |- ( ( ph /\ W = (/) ) -> _om e. On ) |
| 56 | 2 | adantr | |- ( ( ph /\ W = (/) ) -> A e. On ) |
| 57 | 20 | adantr | |- ( ( ph /\ W = (/) ) -> F e. S ) |
| 58 | 31 | a1i | |- ( ( ph /\ W = (/) ) -> (/) e. _om ) |
| 59 | 1on | |- 1o e. On |
|
| 60 | 59 | a1i | |- ( ( ph /\ W = (/) ) -> 1o e. On ) |
| 61 | ovexd | |- ( ph -> ( F supp (/) ) e. _V ) |
|
| 62 | 1 14 2 5 20 | cantnfcl | |- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) |
| 63 | 62 | simpld | |- ( ph -> _E We ( F supp (/) ) ) |
| 64 | 5 | oiiso | |- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
| 65 | 61 63 64 | syl2anc | |- ( ph -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
| 66 | 65 | ad2antrr | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
| 67 | isof1o | |- ( G Isom _E , _E ( dom G , ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
|
| 68 | 66 67 | syl | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
| 69 | f1ocnv | |- ( G : dom G -1-1-onto-> ( F supp (/) ) -> `' G : ( F supp (/) ) -1-1-onto-> dom G ) |
|
| 70 | f1of | |- ( `' G : ( F supp (/) ) -1-1-onto-> dom G -> `' G : ( F supp (/) ) --> dom G ) |
|
| 71 | 68 69 70 | 3syl | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> `' G : ( F supp (/) ) --> dom G ) |
| 72 | ffvelcdm | |- ( ( `' G : ( F supp (/) ) --> dom G /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. dom G ) |
|
| 73 | 71 72 | sylancom | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. dom G ) |
| 74 | elssuni | |- ( ( `' G ` x ) e. dom G -> ( `' G ` x ) C_ U. dom G ) |
|
| 75 | 73 74 | syl | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) C_ U. dom G ) |
| 76 | onelon | |- ( ( dom G e. On /\ ( `' G ` x ) e. dom G ) -> ( `' G ` x ) e. On ) |
|
| 77 | 27 73 76 | sylancr | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. On ) |
| 78 | onuni | |- ( dom G e. On -> U. dom G e. On ) |
|
| 79 | 27 78 | ax-mp | |- U. dom G e. On |
| 80 | ontri1 | |- ( ( ( `' G ` x ) e. On /\ U. dom G e. On ) -> ( ( `' G ` x ) C_ U. dom G <-> -. U. dom G e. ( `' G ` x ) ) ) |
|
| 81 | 77 79 80 | sylancl | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( ( `' G ` x ) C_ U. dom G <-> -. U. dom G e. ( `' G ` x ) ) ) |
| 82 | 75 81 | mpbid | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> -. U. dom G e. ( `' G ` x ) ) |
| 83 | 35 | ad2antrr | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> U. dom G e. dom G ) |
| 84 | isorel | |- ( ( G Isom _E , _E ( dom G , ( F supp (/) ) ) /\ ( U. dom G e. dom G /\ ( `' G ` x ) e. dom G ) ) -> ( U. dom G _E ( `' G ` x ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) ) |
|
| 85 | 66 83 73 84 | syl12anc | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G _E ( `' G ` x ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) ) |
| 86 | fvex | |- ( `' G ` x ) e. _V |
|
| 87 | 86 | epeli | |- ( U. dom G _E ( `' G ` x ) <-> U. dom G e. ( `' G ` x ) ) |
| 88 | 10 | breq1i | |- ( W _E ( G ` ( `' G ` x ) ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) |
| 89 | fvex | |- ( G ` ( `' G ` x ) ) e. _V |
|
| 90 | 89 | epeli | |- ( W _E ( G ` ( `' G ` x ) ) <-> W e. ( G ` ( `' G ` x ) ) ) |
| 91 | 88 90 | bitr3i | |- ( ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) <-> W e. ( G ` ( `' G ` x ) ) ) |
| 92 | 85 87 91 | 3bitr3g | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G e. ( `' G ` x ) <-> W e. ( G ` ( `' G ` x ) ) ) ) |
| 93 | simplr | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> W = (/) ) |
|
| 94 | f1ocnvfv2 | |- ( ( G : dom G -1-1-onto-> ( F supp (/) ) /\ x e. ( F supp (/) ) ) -> ( G ` ( `' G ` x ) ) = x ) |
|
| 95 | 68 94 | sylancom | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( G ` ( `' G ` x ) ) = x ) |
| 96 | 93 95 | eleq12d | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( W e. ( G ` ( `' G ` x ) ) <-> (/) e. x ) ) |
| 97 | 92 96 | bitrd | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G e. ( `' G ` x ) <-> (/) e. x ) ) |
| 98 | 82 97 | mtbid | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> -. (/) e. x ) |
| 99 | onss | |- ( A e. On -> A C_ On ) |
|
| 100 | 2 99 | syl | |- ( ph -> A C_ On ) |
| 101 | 24 100 | sstrd | |- ( ph -> ( F supp (/) ) C_ On ) |
| 102 | 101 | adantr | |- ( ( ph /\ W = (/) ) -> ( F supp (/) ) C_ On ) |
| 103 | 102 | sselda | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x e. On ) |
| 104 | on0eqel | |- ( x e. On -> ( x = (/) \/ (/) e. x ) ) |
|
| 105 | 103 104 | syl | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( x = (/) \/ (/) e. x ) ) |
| 106 | 105 | ord | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( -. x = (/) -> (/) e. x ) ) |
| 107 | 98 106 | mt3d | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x = (/) ) |
| 108 | el1o | |- ( x e. 1o <-> x = (/) ) |
|
| 109 | 107 108 | sylibr | |- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x e. 1o ) |
| 110 | 109 | ex | |- ( ( ph /\ W = (/) ) -> ( x e. ( F supp (/) ) -> x e. 1o ) ) |
| 111 | 110 | ssrdv | |- ( ( ph /\ W = (/) ) -> ( F supp (/) ) C_ 1o ) |
| 112 | 1 55 56 57 58 60 111 | cantnflt2 | |- ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) e. ( _om ^o 1o ) ) |
| 113 | oe1 | |- ( _om e. On -> ( _om ^o 1o ) = _om ) |
|
| 114 | 13 113 | ax-mp | |- ( _om ^o 1o ) = _om |
| 115 | 112 114 | eleqtrdi | |- ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) e. _om ) |
| 116 | 54 115 | eqeltrrd | |- ( ( ph /\ W = (/) ) -> B e. _om ) |
| 117 | 116 | ex | |- ( ph -> ( W = (/) -> B e. _om ) ) |
| 118 | 117 | necon3bd | |- ( ph -> ( -. B e. _om -> W =/= (/) ) ) |
| 119 | 49 118 | mpd | |- ( ph -> W =/= (/) ) |
| 120 | dif1o | |- ( W e. ( On \ 1o ) <-> ( W e. On /\ W =/= (/) ) ) |
|
| 121 | 42 119 120 | sylanbrc | |- ( ph -> W e. ( On \ 1o ) ) |