This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014) (Revised by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnmbf | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 3 | cnex | ⊢ ℂ ∈ V | |
| 4 | reex | ⊢ ℝ ∈ V | |
| 5 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 6 | 3 4 5 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 7 | 1 2 6 | syl2anr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 8 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐴 ∈ dom vol ) | |
| 9 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 10 | recncf | ⊢ ℜ ∈ ( ℂ –cn→ ℝ ) | |
| 11 | 10 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
| 12 | 9 11 | cncfco | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℜ ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℝ ) ) |
| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐴 ⊆ ℝ ) |
| 14 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 15 | 13 14 | sstrdi | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝐴 ⊆ ℂ ) |
| 16 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 17 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) | |
| 18 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 19 | 16 17 18 | cncfcn | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝐴 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 20 | 15 14 19 | sylancl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( 𝐴 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 21 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 22 | 16 21 | rerest | ⊢ ( 𝐴 ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 23 | 13 22 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( 𝐴 –cn→ ℝ ) = ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 26 | 12 25 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℜ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 27 | retopbas | ⊢ ran (,) ∈ TopBases | |
| 28 | bastg | ⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 30 | simpr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝑥 ∈ ran (,) ) | |
| 31 | 29 30 | sselid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → 𝑥 ∈ ( topGen ‘ ran (,) ) ) |
| 32 | cnima | ⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) | |
| 33 | 26 31 32 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 34 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) | |
| 35 | 34 | subopnmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 36 | 8 33 35 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 37 | imcncf | ⊢ ℑ ∈ ( ℂ –cn→ ℝ ) | |
| 38 | 37 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ℑ ∈ ( ℂ –cn→ ℝ ) ) |
| 39 | 9 38 | cncfco | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℑ ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℝ ) ) |
| 40 | 39 25 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℑ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 41 | cnima | ⊢ ( ( ( ℑ ∘ 𝐹 ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) Cn ( topGen ‘ ran (,) ) ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) | |
| 42 | 40 31 41 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 43 | 34 | subopnmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 44 | 8 42 43 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 45 | 36 44 | jca | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 46 | 45 | ralrimiva | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 47 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 48 | 7 46 47 | sylanbrc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) |