This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfimaopn.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| mbfimaopn2.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝐵 ) | ||
| Assertion | mbfimaopn2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝐶 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | mbfimaopn2.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝐵 ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐶 ∈ 𝐾 ↔ 𝐶 ∈ ( 𝐽 ↾t 𝐵 ) ) |
| 4 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 5 | simp3 | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → 𝐵 ⊆ ℂ ) | |
| 6 | cnex | ⊢ ℂ ∈ V | |
| 7 | ssexg | ⊢ ( ( 𝐵 ⊆ ℂ ∧ ℂ ∈ V ) → 𝐵 ∈ V ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → 𝐵 ∈ V ) |
| 9 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ ( 𝐽 ↾t 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) ) ) | |
| 10 | 4 8 9 | sylancr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝐶 ∈ ( 𝐽 ↾t 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) ) ) |
| 11 | 3 10 | bitrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝐶 ∈ 𝐾 ↔ ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) ) ) |
| 12 | simpl2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 13 | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) | |
| 14 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 16 | 1 | mbfimaopn | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ dom vol ) |
| 17 | 16 | 3ad2antl1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ dom vol ) |
| 18 | fimacnv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) = 𝐴 ) | |
| 19 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 20 | 18 19 | eqtr4d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) = dom 𝐹 ) |
| 21 | 12 20 | syl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐵 ) = dom 𝐹 ) |
| 22 | simpl1 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → 𝐹 ∈ MblFn ) | |
| 23 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → dom 𝐹 ∈ dom vol ) |
| 25 | 21 24 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐵 ) ∈ dom vol ) |
| 26 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) ∈ dom vol ∧ ( ◡ 𝐹 “ 𝐵 ) ∈ dom vol ) → ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ∈ dom vol ) | |
| 27 | 17 25 26 | syl2anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ∈ dom vol ) |
| 28 | 15 27 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) ∈ dom vol ) |
| 29 | imaeq2 | ⊢ ( 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝐶 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) ) | |
| 30 | 29 | eleq1d | ⊢ ( 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝐵 ) ) ∈ dom vol ) ) |
| 31 | 28 30 | syl5ibrcom | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) ) |
| 32 | 31 | rexlimdva | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( ∃ 𝑢 ∈ 𝐽 𝐶 = ( 𝑢 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) ) |
| 33 | 11 32 | sylbid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) → ( 𝐶 ∈ 𝐾 → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) ) |
| 34 | 33 | imp | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ 𝐶 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐶 ) ∈ dom vol ) |