This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| cldsubg.1 | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | ||
| cldsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | cldsubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑆 ∈ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | cldsubg.1 | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| 3 | cldsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐺 ∈ TopGrp ) | |
| 5 | 1 3 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑋 = ∪ 𝐽 ) |
| 9 | 8 | difeq1d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) = ( ∪ 𝐽 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) ) |
| 10 | simpl2 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 11 | unisng | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∪ { 𝑆 } = 𝑆 ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ { 𝑆 } = 𝑆 ) |
| 13 | 12 | uneq2d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ ∪ { 𝑆 } ) = ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ 𝑆 ) ) |
| 14 | uniun | ⊢ ∪ ( ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ { 𝑆 } ) = ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ ∪ { 𝑆 } ) | |
| 15 | undif1 | ⊢ ( ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ { 𝑆 } ) = ( ( 𝑋 / 𝑅 ) ∪ { 𝑆 } ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 17 | 3 2 16 | eqgid | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] 𝑅 = 𝑆 ) |
| 18 | 10 17 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] 𝑅 = 𝑆 ) |
| 19 | 2 | ovexi | ⊢ 𝑅 ∈ V |
| 20 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 21 | 4 20 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐺 ∈ Grp ) |
| 22 | 3 16 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 24 | ecelqsw | ⊢ ( ( 𝑅 ∈ V ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → [ ( 0g ‘ 𝐺 ) ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) | |
| 25 | 19 23 24 | sylancr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
| 26 | 18 25 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ∈ ( 𝑋 / 𝑅 ) ) |
| 27 | 26 | snssd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝑆 } ⊆ ( 𝑋 / 𝑅 ) ) |
| 28 | ssequn2 | ⊢ ( { 𝑆 } ⊆ ( 𝑋 / 𝑅 ) ↔ ( ( 𝑋 / 𝑅 ) ∪ { 𝑆 } ) = ( 𝑋 / 𝑅 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑋 / 𝑅 ) ∪ { 𝑆 } ) = ( 𝑋 / 𝑅 ) ) |
| 30 | 15 29 | eqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ { 𝑆 } ) = ( 𝑋 / 𝑅 ) ) |
| 31 | 30 | unieqd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ { 𝑆 } ) = ∪ ( 𝑋 / 𝑅 ) ) |
| 32 | 3 2 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑅 Er 𝑋 ) |
| 33 | 10 32 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑅 Er 𝑋 ) |
| 34 | 19 | a1i | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑅 ∈ V ) |
| 35 | 33 34 | uniqs2 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( 𝑋 / 𝑅 ) = 𝑋 ) |
| 36 | 31 35 | eqtrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ { 𝑆 } ) = 𝑋 ) |
| 37 | 14 36 | eqtr3id | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ ∪ { 𝑆 } ) = 𝑋 ) |
| 38 | 13 37 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ 𝑆 ) = 𝑋 ) |
| 39 | difss | ⊢ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ( 𝑋 / 𝑅 ) | |
| 40 | 39 | unissi | ⊢ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ∪ ( 𝑋 / 𝑅 ) |
| 41 | 40 35 | sseqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ 𝑋 ) |
| 42 | df-ne | ⊢ ( 𝑥 ≠ 𝑆 ↔ ¬ 𝑥 = 𝑆 ) | |
| 43 | 33 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → 𝑅 Er 𝑋 ) |
| 44 | simpr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → 𝑥 ∈ ( 𝑋 / 𝑅 ) ) | |
| 45 | 26 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → 𝑆 ∈ ( 𝑋 / 𝑅 ) ) |
| 46 | 43 44 45 | qsdisj | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → ( 𝑥 = 𝑆 ∨ ( 𝑥 ∩ 𝑆 ) = ∅ ) ) |
| 47 | 46 | ord | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → ( ¬ 𝑥 = 𝑆 → ( 𝑥 ∩ 𝑆 ) = ∅ ) ) |
| 48 | disj2 | ⊢ ( ( 𝑥 ∩ 𝑆 ) = ∅ ↔ 𝑥 ⊆ ( V ∖ 𝑆 ) ) | |
| 49 | 47 48 | imbitrdi | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → ( ¬ 𝑥 = 𝑆 → 𝑥 ⊆ ( V ∖ 𝑆 ) ) ) |
| 50 | 42 49 | biimtrid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( 𝑋 / 𝑅 ) ) → ( 𝑥 ≠ 𝑆 → 𝑥 ⊆ ( V ∖ 𝑆 ) ) ) |
| 51 | 50 | expimpd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑥 ∈ ( 𝑋 / 𝑅 ) ∧ 𝑥 ≠ 𝑆 ) → 𝑥 ⊆ ( V ∖ 𝑆 ) ) ) |
| 52 | eldifsn | ⊢ ( 𝑥 ∈ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ↔ ( 𝑥 ∈ ( 𝑋 / 𝑅 ) ∧ 𝑥 ≠ 𝑆 ) ) | |
| 53 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ( V ∖ 𝑆 ) ↔ 𝑥 ⊆ ( V ∖ 𝑆 ) ) | |
| 54 | 51 52 53 | 3imtr4g | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) → 𝑥 ∈ 𝒫 ( V ∖ 𝑆 ) ) ) |
| 55 | 54 | ssrdv | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ 𝒫 ( V ∖ 𝑆 ) ) |
| 56 | sspwuni | ⊢ ( ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ 𝒫 ( V ∖ 𝑆 ) ↔ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ( V ∖ 𝑆 ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ( V ∖ 𝑆 ) ) |
| 58 | disj2 | ⊢ ( ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∩ 𝑆 ) = ∅ ↔ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ( V ∖ 𝑆 ) ) | |
| 59 | 57 58 | sylibr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∩ 𝑆 ) = ∅ ) |
| 60 | uneqdifeq | ⊢ ( ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ 𝑋 ∧ ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∩ 𝑆 ) = ∅ ) → ( ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ 𝑆 ) = 𝑋 ↔ ( 𝑋 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) = 𝑆 ) ) | |
| 61 | 41 59 60 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∪ 𝑆 ) = 𝑋 ↔ ( 𝑋 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) = 𝑆 ) ) |
| 62 | 38 61 | mpbid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) = 𝑆 ) |
| 63 | 9 62 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) = 𝑆 ) |
| 64 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 65 | 6 64 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 66 | simpl3 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 / 𝑅 ) ∈ Fin ) | |
| 67 | diffi | ⊢ ( ( 𝑋 / 𝑅 ) ∈ Fin → ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∈ Fin ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∈ Fin ) |
| 69 | vex | ⊢ 𝑥 ∈ V | |
| 70 | 69 | elqs | ⊢ ( 𝑥 ∈ ( 𝑋 / 𝑅 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = [ 𝑦 ] 𝑅 ) |
| 71 | simpll2 | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 72 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 73 | 71 72 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 74 | 3 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 75 | 10 74 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ⊆ 𝑋 ) |
| 76 | 75 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 77 | simpr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 78 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 79 | 3 2 78 | eqglact | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → [ 𝑦 ] 𝑅 = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 80 | 73 76 77 79 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → [ 𝑦 ] 𝑅 = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 81 | simplr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 82 | eqid | ⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) | |
| 83 | 82 3 78 1 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 84 | 4 83 | sylan | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 85 | 75 8 | sseqtrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 86 | 85 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 87 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 88 | 87 | hmeocld | ⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 89 | 84 86 88 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 90 | 81 89 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 91 | 80 90 | eqeltrd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → [ 𝑦 ] 𝑅 ∈ ( Clsd ‘ 𝐽 ) ) |
| 92 | eleq1 | ⊢ ( 𝑥 = [ 𝑦 ] 𝑅 → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ [ 𝑦 ] 𝑅 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 93 | 91 92 | syl5ibrcom | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 94 | 93 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = [ 𝑦 ] 𝑅 → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 95 | 70 94 | biimtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( 𝑋 / 𝑅 ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 96 | 95 | ssrdv | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 / 𝑅 ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 97 | 96 | ssdifssd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 98 | 87 | unicld | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∈ Fin ∧ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ⊆ ( Clsd ‘ 𝐽 ) ) → ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 99 | 65 68 97 98 | syl3anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 100 | 87 | cldopn | ⊢ ( ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) ∈ 𝐽 ) |
| 101 | 99 100 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ∪ ( ( 𝑋 / 𝑅 ) ∖ { 𝑆 } ) ) ∈ 𝐽 ) |
| 102 | 63 101 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ∈ 𝐽 ) |
| 103 | 102 | ex | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ∈ 𝐽 ) ) |
| 104 | 1 | opnsubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 105 | 104 | 3expia | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 ∈ 𝐽 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 106 | 105 | 3adant3 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) → ( 𝑆 ∈ 𝐽 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 107 | 103 106 | impbid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 / 𝑅 ) ∈ Fin ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑆 ∈ 𝐽 ) ) |