This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an equivalence class in a quotient set. More restrictive antecedent; kept for backward compatibility; for new work, prefer ecelqs . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Proof shortened by AV, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqsw | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↾ 𝐴 ) ∈ V ) | |
| 2 | ecelqs | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |