This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmeocld | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 4 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) | |
| 5 | cnclima | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) | |
| 6 | 4 5 | eqeltrrid | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 7 | 6 | ex | ⊢ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 9 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 11 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 12 | 11 | ex | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 14 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 15 | 1 14 | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 16 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 18 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) | |
| 19 | 17 18 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 20 | 19 | eleq1d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ↔ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 21 | 13 20 | sylibd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 22 | 8 21 | impbid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |