This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| Assertion | opnsubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 2 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 5 | 1 2 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 9 | 4 8 | sseqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 10 | 8 | difeq1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) = ( ∪ 𝐽 ∖ 𝑆 ) ) |
| 11 | df-ima | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ 𝑆 ) | |
| 12 | 4 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 12 | resmptd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 14 | 13 | rneqd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ 𝑆 ) = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 15 | 11 14 | eqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 16 | simpl1 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝐺 ∈ TopGrp ) | |
| 17 | eldifi | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 19 | eqid | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 20 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 21 | 19 2 20 1 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 22 | 16 18 21 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 23 | simpl3 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑆 ∈ 𝐽 ) | |
| 24 | hmeoima | ⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) ∈ 𝐽 ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) ∈ 𝐽 ) |
| 26 | 15 25 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ) |
| 27 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 28 | 16 27 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝐺 ∈ Grp ) |
| 29 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 30 | 2 20 29 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 31 | 28 18 30 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 32 | simpl2 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 33 | 29 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 34 | 32 33 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 35 | ovex | ⊢ ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ V | |
| 36 | eqid | ⊢ ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 37 | oveq2 | ⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | |
| 38 | 36 37 | elrnmpt1s | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ V ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 39 | 34 35 38 | sylancl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 40 | 31 39 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 41 | 28 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 42 | 18 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 43 | 12 | sselda | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 44 | 2 20 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 45 | 41 42 43 44 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 46 | eldifn | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) → ¬ 𝑥 ∈ 𝑆 ) | |
| 47 | 46 | ad2antlr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ¬ 𝑥 ∈ 𝑆 ) |
| 48 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 49 | 48 | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 50 | 49 | 3com23 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 51 | 50 | 3expia | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 52 | 32 51 | sylan | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 53 | 2 20 48 | grppncan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 54 | 41 42 43 53 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 55 | 54 | eleq1d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ↔ 𝑥 ∈ 𝑆 ) ) |
| 56 | 52 55 | sylibd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 → 𝑥 ∈ 𝑆 ) ) |
| 57 | 47 56 | mtod | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ¬ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 58 | 45 57 | eldifd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) |
| 59 | 58 | fmpttd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : 𝑆 ⟶ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) |
| 60 | 59 | frnd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) |
| 61 | eleq2 | ⊢ ( 𝑢 = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) ) | |
| 62 | sseq1 | ⊢ ( 𝑢 = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ↔ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) | |
| 63 | 61 62 | anbi12d | ⊢ ( 𝑢 = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ↔ ( 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) ) |
| 64 | 63 | rspcev | ⊢ ( ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ∧ ( 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 65 | 26 40 60 64 | syl12anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 66 | 65 | ralrimiva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ∀ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 67 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) | |
| 68 | 6 67 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐽 ∈ Top ) |
| 69 | eltop2 | ⊢ ( 𝐽 ∈ Top → ( ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) ) |
| 71 | 66 70 | mpbird | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∈ 𝐽 ) |
| 72 | 10 71 | eqeltrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) |
| 73 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 74 | 73 | iscld | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| 75 | 68 74 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| 76 | 9 72 75 | mpbir2and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |