This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qsss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) | |
| qsss.2 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| Assertion | uniqs2 | ⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝐴 ) | |
| 2 | qsss.2 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 3 | uniqsw | ⊢ ( 𝑅 ∈ 𝑉 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |
| 5 | erdm | ⊢ ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → dom 𝑅 = 𝐴 ) |
| 7 | 6 | imaeq2d | ⊢ ( 𝜑 → ( 𝑅 “ dom 𝑅 ) = ( 𝑅 “ 𝐴 ) ) |
| 8 | 4 7 | eqtr4d | ⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = ( 𝑅 “ dom 𝑅 ) ) |
| 9 | imadmrn | ⊢ ( 𝑅 “ dom 𝑅 ) = ran 𝑅 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = ran 𝑅 ) |
| 11 | errn | ⊢ ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 ) | |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → ran 𝑅 = 𝐴 ) |
| 13 | 10 12 | eqtrd | ⊢ ( 𝜑 → ∪ ( 𝐴 / 𝑅 ) = 𝐴 ) |