This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest .) (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cldllycmp | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ 𝑛-Locally Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nllytop | ⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top ) | |
| 2 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 4 | elrest | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝐴 ) ) ) | |
| 5 | simpll | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → 𝐽 ∈ 𝑛-Locally Comp ) | |
| 6 | simprl | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → 𝑢 ∈ 𝐽 ) | |
| 7 | simprr | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) | |
| 8 | 7 | elin1d | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → 𝑦 ∈ 𝑢 ) |
| 9 | nlly2i | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ 𝑢 ) → ∃ 𝑠 ∈ 𝒫 𝑢 ∃ 𝑤 ∈ 𝐽 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) | |
| 10 | 5 6 8 9 | syl3anc | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → ∃ 𝑠 ∈ 𝒫 𝑢 ∃ 𝑤 ∈ 𝐽 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) |
| 11 | 3 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 12 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝐽 ∈ Top ) |
| 13 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 14 | simprlr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑤 ∈ 𝐽 ) | |
| 15 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑤 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 17 | simprr1 | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 ∈ 𝑤 ) | |
| 18 | simplrr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) | |
| 19 | 18 | elin2d | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 ∈ 𝐴 ) |
| 20 | 17 19 | elind | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 ∈ ( 𝑤 ∩ 𝐴 ) ) |
| 21 | opnneip | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ ( 𝑤 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ∧ 𝑦 ∈ ( 𝑤 ∩ 𝐴 ) ) → ( 𝑤 ∩ 𝐴 ) ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ) | |
| 22 | 11 16 20 21 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑤 ∩ 𝐴 ) ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ) |
| 23 | simprr2 | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑤 ⊆ 𝑠 ) | |
| 24 | 23 | ssrind | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑤 ∩ 𝐴 ) ⊆ ( 𝑠 ∩ 𝐴 ) ) |
| 25 | inss2 | ⊢ ( 𝑠 ∩ 𝐴 ) ⊆ 𝐴 | |
| 26 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 27 | 26 | cldss | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 28 | 13 27 | syl | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 29 | 26 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 30 | 12 28 29 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 31 | 25 30 | sseqtrid | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 32 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) | |
| 33 | 32 | ssnei2 | ⊢ ( ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ ( 𝑤 ∩ 𝐴 ) ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ) ∧ ( ( 𝑤 ∩ 𝐴 ) ⊆ ( 𝑠 ∩ 𝐴 ) ∧ ( 𝑠 ∩ 𝐴 ) ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ) → ( 𝑠 ∩ 𝐴 ) ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ) |
| 34 | 11 22 24 31 33 | syl22anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ) |
| 35 | simprll | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ∈ 𝒫 𝑢 ) | |
| 36 | 35 | elpwid | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ 𝑢 ) |
| 37 | 36 | ssrind | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ⊆ ( 𝑢 ∩ 𝐴 ) ) |
| 38 | vex | ⊢ 𝑠 ∈ V | |
| 39 | 38 | inex1 | ⊢ ( 𝑠 ∩ 𝐴 ) ∈ V |
| 40 | 39 | elpw | ⊢ ( ( 𝑠 ∩ 𝐴 ) ∈ 𝒫 ( 𝑢 ∩ 𝐴 ) ↔ ( 𝑠 ∩ 𝐴 ) ⊆ ( 𝑢 ∩ 𝐴 ) ) |
| 41 | 37 40 | sylibr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ∈ 𝒫 ( 𝑢 ∩ 𝐴 ) ) |
| 42 | 34 41 | elind | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ) |
| 43 | 25 | a1i | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ⊆ 𝐴 ) |
| 44 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑠 ∩ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) = ( 𝐽 ↾t ( 𝑠 ∩ 𝐴 ) ) ) | |
| 45 | 12 43 13 44 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) = ( 𝐽 ↾t ( 𝑠 ∩ 𝐴 ) ) ) |
| 46 | inss1 | ⊢ ( 𝑠 ∩ 𝐴 ) ⊆ 𝑠 | |
| 47 | 46 | a1i | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ⊆ 𝑠 ) |
| 48 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑠 ∩ 𝐴 ) ⊆ 𝑠 ∧ 𝑠 ∈ 𝒫 𝑢 ) → ( ( 𝐽 ↾t 𝑠 ) ↾t ( 𝑠 ∩ 𝐴 ) ) = ( 𝐽 ↾t ( 𝑠 ∩ 𝐴 ) ) ) | |
| 49 | 12 47 35 48 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝐽 ↾t 𝑠 ) ↾t ( 𝑠 ∩ 𝐴 ) ) = ( 𝐽 ↾t ( 𝑠 ∩ 𝐴 ) ) ) |
| 50 | 45 49 | eqtr4d | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) = ( ( 𝐽 ↾t 𝑠 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ) |
| 51 | simprr3 | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝐽 ↾t 𝑠 ) ∈ Comp ) | |
| 52 | incom | ⊢ ( 𝑠 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑠 ) | |
| 53 | eqid | ⊢ ( 𝐴 ∩ 𝑠 ) = ( 𝐴 ∩ 𝑠 ) | |
| 54 | ineq1 | ⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∩ 𝑠 ) = ( 𝐴 ∩ 𝑠 ) ) | |
| 55 | 54 | rspceeqv | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐴 ∩ 𝑠 ) = ( 𝐴 ∩ 𝑠 ) ) → ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ( 𝐴 ∩ 𝑠 ) = ( 𝑣 ∩ 𝑠 ) ) |
| 56 | 13 53 55 | sylancl | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ( 𝐴 ∩ 𝑠 ) = ( 𝑣 ∩ 𝑠 ) ) |
| 57 | simplrl | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ∈ 𝐽 ) | |
| 58 | elssuni | ⊢ ( 𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽 ) | |
| 59 | 57 58 | syl | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ ∪ 𝐽 ) |
| 60 | 36 59 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ∪ 𝐽 ) |
| 61 | 26 | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽 ) → ( ( 𝐴 ∩ 𝑠 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑠 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ( 𝐴 ∩ 𝑠 ) = ( 𝑣 ∩ 𝑠 ) ) ) |
| 62 | 12 60 61 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝐴 ∩ 𝑠 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑠 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ( 𝐴 ∩ 𝑠 ) = ( 𝑣 ∩ 𝑠 ) ) ) |
| 63 | 56 62 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝐴 ∩ 𝑠 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑠 ) ) ) |
| 64 | 52 63 | eqeltrid | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 ∩ 𝐴 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑠 ) ) ) |
| 65 | cmpcld | ⊢ ( ( ( 𝐽 ↾t 𝑠 ) ∈ Comp ∧ ( 𝑠 ∩ 𝐴 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑠 ) ) ) → ( ( 𝐽 ↾t 𝑠 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ∈ Comp ) | |
| 66 | 51 64 65 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝐽 ↾t 𝑠 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ∈ Comp ) |
| 67 | 50 66 | eqeltrd | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ∈ Comp ) |
| 68 | oveq2 | ⊢ ( 𝑣 = ( 𝑠 ∩ 𝐴 ) → ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) = ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ) | |
| 69 | 68 | eleq1d | ⊢ ( 𝑣 = ( 𝑠 ∩ 𝐴 ) → ( ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ↔ ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ∈ Comp ) ) |
| 70 | 69 | rspcev | ⊢ ( ( ( 𝑠 ∩ 𝐴 ) ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ↾t ( 𝑠 ∩ 𝐴 ) ) ∈ Comp ) → ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) |
| 71 | 42 67 70 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) |
| 72 | 71 | expr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ∧ ( 𝑠 ∈ 𝒫 𝑢 ∧ 𝑤 ∈ 𝐽 ) ) → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 73 | 72 | rexlimdvva | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → ( ∃ 𝑠 ∈ 𝒫 𝑢 ∃ 𝑤 ∈ 𝐽 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 74 | 10 73 | mpd | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) |
| 75 | 74 | anassrs | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) |
| 76 | 75 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) |
| 77 | pweq | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝐴 ) → 𝒫 𝑥 = 𝒫 ( 𝑢 ∩ 𝐴 ) ) | |
| 78 | 77 | ineq2d | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝐴 ) → ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) = ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ) |
| 79 | 78 | rexeqdv | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝐴 ) → ( ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ↔ ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 80 | 79 | raleqbi1dv | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ↔ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 ( 𝑢 ∩ 𝐴 ) ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 81 | 76 80 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑥 = ( 𝑢 ∩ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 82 | 81 | rexlimdva | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 83 | 4 82 | sylbid | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) |
| 84 | 83 | ralrimiv | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) |
| 85 | isnlly | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ 𝑛-Locally Comp ↔ ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ ∀ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( ( 𝐽 ↾t 𝐴 ) ↾t 𝑣 ) ∈ Comp ) ) | |
| 86 | 3 84 85 | sylanbrc | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ 𝑛-Locally Comp ) |