This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an n-locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnlly | ⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
| 3 | 2 | ineq1d | ⊢ ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
| 4 | oveq1 | ⊢ ( 𝑗 = 𝐽 → ( 𝑗 ↾t 𝑢 ) = ( 𝐽 ↾t 𝑢 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 6 | 3 5 | rexeqbidv | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 8 | 7 | raleqbi1dv | ⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 9 | df-nlly | ⊢ 𝑛-Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |