This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset M of X containing a neighborhood N of a set S is a neighborhood of this set. Generalization to subsets of Property V_i of BourbakiTop1 p. I.3. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ssnei2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋 ) ) → 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋 ) ) → 𝑀 ⊆ 𝑋 ) | |
| 3 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) | |
| 4 | sstr2 | ⊢ ( 𝑔 ⊆ 𝑁 → ( 𝑁 ⊆ 𝑀 → 𝑔 ⊆ 𝑀 ) ) | |
| 5 | 4 | com12 | ⊢ ( 𝑁 ⊆ 𝑀 → ( 𝑔 ⊆ 𝑁 → 𝑔 ⊆ 𝑀 ) ) |
| 6 | 5 | anim2d | ⊢ ( 𝑁 ⊆ 𝑀 → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) → ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) ) |
| 7 | 6 | reximdv | ⊢ ( 𝑁 ⊆ 𝑀 → ( ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) ) |
| 8 | 3 7 | mpan9 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑁 ⊆ 𝑀 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) |
| 9 | 8 | adantrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) |
| 10 | 1 | neiss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) |
| 11 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑀 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) ) ) |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑀 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋 ) ) → ( 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑀 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀 ) ) ) ) |
| 14 | 2 9 13 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋 ) ) → 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |