This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009) (Proof shortened by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restcld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑆 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | id | ⊢ ( 𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋 ) | |
| 3 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 4 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑆 ∈ V ) | |
| 5 | 2 3 4 | syl2anr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
| 6 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) | |
| 7 | 5 6 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
| 8 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ ( 𝐽 ↾t 𝑆 ) | |
| 9 | 8 | iscld | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ Top → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑆 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 10 | 7 9 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑆 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 11 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 12 | 11 | sseq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ⊆ 𝑆 ↔ 𝐴 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ) ) |
| 13 | 11 | difeq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∖ 𝐴 ) = ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝐴 ) ) |
| 14 | 13 | eleq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ↔ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 ↾t 𝑆 ) ∧ ( ∪ ( 𝐽 ↾t 𝑆 ) ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 16 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) ) | |
| 17 | 5 16 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) ) |
| 18 | 17 | anbi2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ↔ ( 𝐴 ⊆ 𝑆 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) ) ) |
| 19 | 1 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → ( 𝑋 ∖ 𝑜 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 20 | 19 | ad5ant14 | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 21 | incom | ⊢ ( 𝑋 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑋 ) | |
| 22 | dfss2 | ⊢ ( 𝑆 ⊆ 𝑋 ↔ ( 𝑆 ∩ 𝑋 ) = 𝑆 ) | |
| 23 | 22 | biimpi | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∩ 𝑋 ) = 𝑆 ) |
| 24 | 21 23 | eqtrid | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑋 ∩ 𝑆 ) = 𝑆 ) |
| 25 | 24 | ad4antlr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ( 𝑋 ∩ 𝑆 ) = 𝑆 ) |
| 26 | 25 | difeq1d | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ( ( 𝑋 ∩ 𝑆 ) ∖ 𝑜 ) = ( 𝑆 ∖ 𝑜 ) ) |
| 27 | difeq2 | ⊢ ( ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) → ( 𝑆 ∖ ( 𝑆 ∖ 𝐴 ) ) = ( 𝑆 ∖ ( 𝑜 ∩ 𝑆 ) ) ) | |
| 28 | difindi | ⊢ ( 𝑆 ∖ ( 𝑜 ∩ 𝑆 ) ) = ( ( 𝑆 ∖ 𝑜 ) ∪ ( 𝑆 ∖ 𝑆 ) ) | |
| 29 | difid | ⊢ ( 𝑆 ∖ 𝑆 ) = ∅ | |
| 30 | 29 | uneq2i | ⊢ ( ( 𝑆 ∖ 𝑜 ) ∪ ( 𝑆 ∖ 𝑆 ) ) = ( ( 𝑆 ∖ 𝑜 ) ∪ ∅ ) |
| 31 | un0 | ⊢ ( ( 𝑆 ∖ 𝑜 ) ∪ ∅ ) = ( 𝑆 ∖ 𝑜 ) | |
| 32 | 28 30 31 | 3eqtri | ⊢ ( 𝑆 ∖ ( 𝑜 ∩ 𝑆 ) ) = ( 𝑆 ∖ 𝑜 ) |
| 33 | 27 32 | eqtrdi | ⊢ ( ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) → ( 𝑆 ∖ ( 𝑆 ∖ 𝐴 ) ) = ( 𝑆 ∖ 𝑜 ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ( 𝑆 ∖ ( 𝑆 ∖ 𝐴 ) ) = ( 𝑆 ∖ 𝑜 ) ) |
| 35 | dfss4 | ⊢ ( 𝐴 ⊆ 𝑆 ↔ ( 𝑆 ∖ ( 𝑆 ∖ 𝐴 ) ) = 𝐴 ) | |
| 36 | 35 | biimpi | ⊢ ( 𝐴 ⊆ 𝑆 → ( 𝑆 ∖ ( 𝑆 ∖ 𝐴 ) ) = 𝐴 ) |
| 37 | 36 | ad3antlr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ( 𝑆 ∖ ( 𝑆 ∖ 𝐴 ) ) = 𝐴 ) |
| 38 | 26 34 37 | 3eqtr2rd | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → 𝐴 = ( ( 𝑋 ∩ 𝑆 ) ∖ 𝑜 ) ) |
| 39 | 21 | difeq1i | ⊢ ( ( 𝑋 ∩ 𝑆 ) ∖ 𝑜 ) = ( ( 𝑆 ∩ 𝑋 ) ∖ 𝑜 ) |
| 40 | indif2 | ⊢ ( 𝑆 ∩ ( 𝑋 ∖ 𝑜 ) ) = ( ( 𝑆 ∩ 𝑋 ) ∖ 𝑜 ) | |
| 41 | incom | ⊢ ( 𝑆 ∩ ( 𝑋 ∖ 𝑜 ) ) = ( ( 𝑋 ∖ 𝑜 ) ∩ 𝑆 ) | |
| 42 | 39 40 41 | 3eqtr2i | ⊢ ( ( 𝑋 ∩ 𝑆 ) ∖ 𝑜 ) = ( ( 𝑋 ∖ 𝑜 ) ∩ 𝑆 ) |
| 43 | 38 42 | eqtrdi | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → 𝐴 = ( ( 𝑋 ∖ 𝑜 ) ∩ 𝑆 ) ) |
| 44 | ineq1 | ⊢ ( 𝑥 = ( 𝑋 ∖ 𝑜 ) → ( 𝑥 ∩ 𝑆 ) = ( ( 𝑋 ∖ 𝑜 ) ∩ 𝑆 ) ) | |
| 45 | 44 | rspceeqv | ⊢ ( ( ( 𝑋 ∖ 𝑜 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 = ( ( 𝑋 ∖ 𝑜 ) ∩ 𝑆 ) ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) |
| 46 | 20 43 45 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) |
| 47 | 46 | rexlimdva2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) ) |
| 48 | 47 | expimpd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 ⊆ 𝑆 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝑆 ∖ 𝐴 ) = ( 𝑜 ∩ 𝑆 ) ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) ) |
| 49 | 18 48 | sylbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) ) |
| 50 | difindi | ⊢ ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) = ( ( 𝑆 ∖ 𝑥 ) ∪ ( 𝑆 ∖ 𝑆 ) ) | |
| 51 | 29 | uneq2i | ⊢ ( ( 𝑆 ∖ 𝑥 ) ∪ ( 𝑆 ∖ 𝑆 ) ) = ( ( 𝑆 ∖ 𝑥 ) ∪ ∅ ) |
| 52 | un0 | ⊢ ( ( 𝑆 ∖ 𝑥 ) ∪ ∅ ) = ( 𝑆 ∖ 𝑥 ) | |
| 53 | 50 51 52 | 3eqtri | ⊢ ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) = ( 𝑆 ∖ 𝑥 ) |
| 54 | difin2 | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∖ 𝑥 ) = ( ( 𝑋 ∖ 𝑥 ) ∩ 𝑆 ) ) | |
| 55 | 54 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∖ 𝑥 ) = ( ( 𝑋 ∖ 𝑥 ) ∩ 𝑆 ) ) |
| 56 | 53 55 | eqtrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) = ( ( 𝑋 ∖ 𝑥 ) ∩ 𝑆 ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) = ( ( 𝑋 ∖ 𝑥 ) ∩ 𝑆 ) ) |
| 58 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) | |
| 59 | 5 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑆 ∈ V ) |
| 60 | 1 | cldopn | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) |
| 62 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ∧ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) → ( ( 𝑋 ∖ 𝑥 ) ∩ 𝑆 ) ∈ ( 𝐽 ↾t 𝑆 ) ) | |
| 63 | 58 59 61 62 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑋 ∖ 𝑥 ) ∩ 𝑆 ) ∈ ( 𝐽 ↾t 𝑆 ) ) |
| 64 | 57 63 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) ∈ ( 𝐽 ↾t 𝑆 ) ) |
| 65 | inss2 | ⊢ ( 𝑥 ∩ 𝑆 ) ⊆ 𝑆 | |
| 66 | 64 65 | jctil | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑥 ∩ 𝑆 ) ⊆ 𝑆 ∧ ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
| 67 | sseq1 | ⊢ ( 𝐴 = ( 𝑥 ∩ 𝑆 ) → ( 𝐴 ⊆ 𝑆 ↔ ( 𝑥 ∩ 𝑆 ) ⊆ 𝑆 ) ) | |
| 68 | difeq2 | ⊢ ( 𝐴 = ( 𝑥 ∩ 𝑆 ) → ( 𝑆 ∖ 𝐴 ) = ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) ) | |
| 69 | 68 | eleq1d | ⊢ ( 𝐴 = ( 𝑥 ∩ 𝑆 ) → ( ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ↔ ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
| 70 | 67 69 | anbi12d | ⊢ ( 𝐴 = ( 𝑥 ∩ 𝑆 ) → ( ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ↔ ( ( 𝑥 ∩ 𝑆 ) ⊆ 𝑆 ∧ ( 𝑆 ∖ ( 𝑥 ∩ 𝑆 ) ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 71 | 66 70 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 = ( 𝑥 ∩ 𝑆 ) → ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 72 | 71 | rexlimdva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) → ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 73 | 49 72 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 ⊆ 𝑆 ∧ ( 𝑆 ∖ 𝐴 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) ) |
| 74 | 10 15 73 | 3bitr2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑆 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( 𝑥 ∩ 𝑆 ) ) ) |