This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtdif | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( θ ‘ 𝑁 ) − ( θ ‘ 𝑀 ) ) = Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) | |
| 2 | chtval | ⊢ ( 𝑁 ∈ ℝ → ( θ ‘ 𝑁 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑁 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 4 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 5 | 2z | ⊢ 2 ∈ ℤ | |
| 6 | ifcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 2 ∈ ℤ ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ) |
| 8 | 5 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 2 ∈ ℤ ) |
| 9 | 4 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 10 | 2re | ⊢ 2 ∈ ℝ | |
| 11 | min2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 2 ∈ ℝ ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 2 ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 2 ) |
| 13 | eluz2 | ⊢ ( 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ↔ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ∧ 2 ∈ ℤ ∧ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 2 ) ) | |
| 14 | 7 8 12 13 | syl3anbrc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) |
| 15 | ppisval2 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) ) | |
| 16 | 1 14 15 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) ) |
| 17 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 18 | flid | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
| 20 | 19 | oveq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) = ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ) |
| 21 | 20 | ineq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑁 ) ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
| 22 | 16 21 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑁 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
| 23 | 22 | sumeq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 24 | 9 | ltp1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 < ( 𝑀 + 1 ) ) |
| 25 | fzdisj | ⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 27 | 26 | ineq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) = ( ∅ ∩ ℙ ) ) |
| 28 | inindir | ⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∩ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) | |
| 29 | 0in | ⊢ ( ∅ ∩ ℙ ) = ∅ | |
| 30 | 27 28 29 | 3eqtr3g | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∩ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) = ∅ ) |
| 31 | min1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 2 ∈ ℝ ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 𝑀 ) | |
| 32 | 9 10 31 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 𝑀 ) |
| 33 | eluz2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ↔ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ≤ 𝑀 ) ) | |
| 34 | 7 4 32 33 | syl3anbrc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) |
| 35 | id | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 36 | elfzuzb | ⊢ ( 𝑀 ∈ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ↔ ( 𝑀 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 37 | 34 35 36 | sylanbrc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ) |
| 38 | fzsplit | ⊢ ( 𝑀 ∈ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 40 | 39 | ineq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) ) |
| 41 | indir | ⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) | |
| 42 | 40 41 | eqtrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) = ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) ) |
| 43 | fzfid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∈ Fin ) | |
| 44 | inss1 | ⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) | |
| 45 | ssfi | ⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∈ Fin ∧ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) | |
| 46 | 43 44 45 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) |
| 47 | simpr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) | |
| 48 | 47 | elin2d | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 49 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 50 | 48 49 | syl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 51 | 50 | nnrpd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 52 | 51 | relogcld | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 53 | 52 | recnd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 54 | 30 42 46 53 | fsumsplit | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 55 | 23 54 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 56 | 3 55 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑁 ) = ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 57 | chtval | ⊢ ( 𝑀 ∈ ℝ → ( θ ‘ 𝑀 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 58 | 9 57 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑀 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 59 | ppisval2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ) ) → ( ( 0 [,] 𝑀 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) ∩ ℙ ) ) | |
| 60 | 9 14 59 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑀 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) ∩ ℙ ) ) |
| 61 | flid | ⊢ ( 𝑀 ∈ ℤ → ( ⌊ ‘ 𝑀 ) = 𝑀 ) | |
| 62 | 4 61 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ⌊ ‘ 𝑀 ) = 𝑀 ) |
| 63 | 62 | oveq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) = ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ) |
| 64 | 63 | ineq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... ( ⌊ ‘ 𝑀 ) ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) |
| 65 | 60 64 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 0 [,] 𝑀 ) ∩ ℙ ) = ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) |
| 66 | 65 | sumeq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 67 | 58 66 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( θ ‘ 𝑀 ) = Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 68 | 56 67 | oveq12d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( θ ‘ 𝑁 ) − ( θ ‘ 𝑀 ) ) = ( ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) − Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 69 | fzfi | ⊢ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∈ Fin | |
| 70 | inss1 | ⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) | |
| 71 | ssfi | ⊢ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∈ Fin ∧ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∈ Fin ) | |
| 72 | 69 70 71 | mp2an | ⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∈ Fin |
| 73 | 72 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∈ Fin ) |
| 74 | ssun1 | ⊢ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) | |
| 75 | 74 42 | sseqtrrid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ⊆ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
| 76 | 75 | sselda | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
| 77 | 76 53 | syldan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 78 | 73 77 | fsumcl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ ℂ ) |
| 79 | fzfi | ⊢ ( ( 𝑀 + 1 ) ... 𝑁 ) ∈ Fin | |
| 80 | inss1 | ⊢ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) | |
| 81 | ssfi | ⊢ ( ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∈ Fin ∧ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) | |
| 82 | 79 80 81 | mp2an | ⊢ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin |
| 83 | 82 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ∈ Fin ) |
| 84 | ssun2 | ⊢ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) | |
| 85 | 84 42 | sseqtrrid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ⊆ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
| 86 | 85 | sselda | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑁 ) ∩ ℙ ) ) |
| 87 | 86 53 | syldan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 88 | 83 87 | fsumcl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ ℂ ) |
| 89 | 78 88 | pncan2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) − Σ 𝑝 ∈ ( ( if ( 𝑀 ≤ 2 , 𝑀 , 2 ) ... 𝑀 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) = Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 90 | 68 89 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( θ ‘ 𝑁 ) − ( θ ‘ 𝑀 ) ) = Σ 𝑝 ∈ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |