This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtdif | |- ( N e. ( ZZ>= ` M ) -> ( ( theta ` N ) - ( theta ` M ) ) = sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | |- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
|
| 2 | chtval | |- ( N e. RR -> ( theta ` N ) = sum_ p e. ( ( 0 [,] N ) i^i Prime ) ( log ` p ) ) |
|
| 3 | 1 2 | syl | |- ( N e. ( ZZ>= ` M ) -> ( theta ` N ) = sum_ p e. ( ( 0 [,] N ) i^i Prime ) ( log ` p ) ) |
| 4 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | ifcl | |- ( ( M e. ZZ /\ 2 e. ZZ ) -> if ( M <_ 2 , M , 2 ) e. ZZ ) |
|
| 7 | 4 5 6 | sylancl | |- ( N e. ( ZZ>= ` M ) -> if ( M <_ 2 , M , 2 ) e. ZZ ) |
| 8 | 5 | a1i | |- ( N e. ( ZZ>= ` M ) -> 2 e. ZZ ) |
| 9 | 4 | zred | |- ( N e. ( ZZ>= ` M ) -> M e. RR ) |
| 10 | 2re | |- 2 e. RR |
|
| 11 | min2 | |- ( ( M e. RR /\ 2 e. RR ) -> if ( M <_ 2 , M , 2 ) <_ 2 ) |
|
| 12 | 9 10 11 | sylancl | |- ( N e. ( ZZ>= ` M ) -> if ( M <_ 2 , M , 2 ) <_ 2 ) |
| 13 | eluz2 | |- ( 2 e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) <-> ( if ( M <_ 2 , M , 2 ) e. ZZ /\ 2 e. ZZ /\ if ( M <_ 2 , M , 2 ) <_ 2 ) ) |
|
| 14 | 7 8 12 13 | syl3anbrc | |- ( N e. ( ZZ>= ` M ) -> 2 e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) ) |
| 15 | ppisval2 | |- ( ( N e. RR /\ 2 e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) ) -> ( ( 0 [,] N ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... ( |_ ` N ) ) i^i Prime ) ) |
|
| 16 | 1 14 15 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( ( 0 [,] N ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... ( |_ ` N ) ) i^i Prime ) ) |
| 17 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 18 | flid | |- ( N e. ZZ -> ( |_ ` N ) = N ) |
|
| 19 | 17 18 | syl | |- ( N e. ( ZZ>= ` M ) -> ( |_ ` N ) = N ) |
| 20 | 19 | oveq2d | |- ( N e. ( ZZ>= ` M ) -> ( if ( M <_ 2 , M , 2 ) ... ( |_ ` N ) ) = ( if ( M <_ 2 , M , 2 ) ... N ) ) |
| 21 | 20 | ineq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... ( |_ ` N ) ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
| 22 | 16 21 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( ( 0 [,] N ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
| 23 | 22 | sumeq1d | |- ( N e. ( ZZ>= ` M ) -> sum_ p e. ( ( 0 [,] N ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ( log ` p ) ) |
| 24 | 9 | ltp1d | |- ( N e. ( ZZ>= ` M ) -> M < ( M + 1 ) ) |
| 25 | fzdisj | |- ( M < ( M + 1 ) -> ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
|
| 26 | 24 25 | syl | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 27 | 26 | ineq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i ( ( M + 1 ) ... N ) ) i^i Prime ) = ( (/) i^i Prime ) ) |
| 28 | inindir | |- ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i ( ( M + 1 ) ... N ) ) i^i Prime ) = ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) i^i ( ( ( M + 1 ) ... N ) i^i Prime ) ) |
|
| 29 | 0in | |- ( (/) i^i Prime ) = (/) |
|
| 30 | 27 28 29 | 3eqtr3g | |- ( N e. ( ZZ>= ` M ) -> ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) i^i ( ( ( M + 1 ) ... N ) i^i Prime ) ) = (/) ) |
| 31 | min1 | |- ( ( M e. RR /\ 2 e. RR ) -> if ( M <_ 2 , M , 2 ) <_ M ) |
|
| 32 | 9 10 31 | sylancl | |- ( N e. ( ZZ>= ` M ) -> if ( M <_ 2 , M , 2 ) <_ M ) |
| 33 | eluz2 | |- ( M e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) <-> ( if ( M <_ 2 , M , 2 ) e. ZZ /\ M e. ZZ /\ if ( M <_ 2 , M , 2 ) <_ M ) ) |
|
| 34 | 7 4 32 33 | syl3anbrc | |- ( N e. ( ZZ>= ` M ) -> M e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) ) |
| 35 | id | |- ( N e. ( ZZ>= ` M ) -> N e. ( ZZ>= ` M ) ) |
|
| 36 | elfzuzb | |- ( M e. ( if ( M <_ 2 , M , 2 ) ... N ) <-> ( M e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) /\ N e. ( ZZ>= ` M ) ) ) |
|
| 37 | 34 35 36 | sylanbrc | |- ( N e. ( ZZ>= ` M ) -> M e. ( if ( M <_ 2 , M , 2 ) ... N ) ) |
| 38 | fzsplit | |- ( M e. ( if ( M <_ 2 , M , 2 ) ... N ) -> ( if ( M <_ 2 , M , 2 ) ... N ) = ( ( if ( M <_ 2 , M , 2 ) ... M ) u. ( ( M + 1 ) ... N ) ) ) |
|
| 39 | 37 38 | syl | |- ( N e. ( ZZ>= ` M ) -> ( if ( M <_ 2 , M , 2 ) ... N ) = ( ( if ( M <_ 2 , M , 2 ) ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 40 | 39 | ineq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) = ( ( ( if ( M <_ 2 , M , 2 ) ... M ) u. ( ( M + 1 ) ... N ) ) i^i Prime ) ) |
| 41 | indir | |- ( ( ( if ( M <_ 2 , M , 2 ) ... M ) u. ( ( M + 1 ) ... N ) ) i^i Prime ) = ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) u. ( ( ( M + 1 ) ... N ) i^i Prime ) ) |
|
| 42 | 40 41 | eqtrdi | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) = ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) u. ( ( ( M + 1 ) ... N ) i^i Prime ) ) ) |
| 43 | fzfid | |- ( N e. ( ZZ>= ` M ) -> ( if ( M <_ 2 , M , 2 ) ... N ) e. Fin ) |
|
| 44 | inss1 | |- ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) C_ ( if ( M <_ 2 , M , 2 ) ... N ) |
|
| 45 | ssfi | |- ( ( ( if ( M <_ 2 , M , 2 ) ... N ) e. Fin /\ ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) C_ ( if ( M <_ 2 , M , 2 ) ... N ) ) -> ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) e. Fin ) |
|
| 46 | 43 44 45 | sylancl | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) e. Fin ) |
| 47 | simpr | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) -> p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
|
| 48 | 47 | elin2d | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) -> p e. Prime ) |
| 49 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 50 | 48 49 | syl | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) -> p e. NN ) |
| 51 | 50 | nnrpd | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) -> p e. RR+ ) |
| 52 | 51 | relogcld | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 53 | 52 | recnd | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 54 | 30 42 46 53 | fsumsplit | |- ( N e. ( ZZ>= ` M ) -> sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ( log ` p ) = ( sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) + sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) ) |
| 55 | 23 54 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> sum_ p e. ( ( 0 [,] N ) i^i Prime ) ( log ` p ) = ( sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) + sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) ) |
| 56 | 3 55 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( theta ` N ) = ( sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) + sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) ) |
| 57 | chtval | |- ( M e. RR -> ( theta ` M ) = sum_ p e. ( ( 0 [,] M ) i^i Prime ) ( log ` p ) ) |
|
| 58 | 9 57 | syl | |- ( N e. ( ZZ>= ` M ) -> ( theta ` M ) = sum_ p e. ( ( 0 [,] M ) i^i Prime ) ( log ` p ) ) |
| 59 | ppisval2 | |- ( ( M e. RR /\ 2 e. ( ZZ>= ` if ( M <_ 2 , M , 2 ) ) ) -> ( ( 0 [,] M ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... ( |_ ` M ) ) i^i Prime ) ) |
|
| 60 | 9 14 59 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ( ( 0 [,] M ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... ( |_ ` M ) ) i^i Prime ) ) |
| 61 | flid | |- ( M e. ZZ -> ( |_ ` M ) = M ) |
|
| 62 | 4 61 | syl | |- ( N e. ( ZZ>= ` M ) -> ( |_ ` M ) = M ) |
| 63 | 62 | oveq2d | |- ( N e. ( ZZ>= ` M ) -> ( if ( M <_ 2 , M , 2 ) ... ( |_ ` M ) ) = ( if ( M <_ 2 , M , 2 ) ... M ) ) |
| 64 | 63 | ineq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... ( |_ ` M ) ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ) |
| 65 | 60 64 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( ( 0 [,] M ) i^i Prime ) = ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ) |
| 66 | 65 | sumeq1d | |- ( N e. ( ZZ>= ` M ) -> sum_ p e. ( ( 0 [,] M ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) ) |
| 67 | 58 66 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( theta ` M ) = sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) ) |
| 68 | 56 67 | oveq12d | |- ( N e. ( ZZ>= ` M ) -> ( ( theta ` N ) - ( theta ` M ) ) = ( ( sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) + sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) - sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) ) ) |
| 69 | fzfi | |- ( if ( M <_ 2 , M , 2 ) ... M ) e. Fin |
|
| 70 | inss1 | |- ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) C_ ( if ( M <_ 2 , M , 2 ) ... M ) |
|
| 71 | ssfi | |- ( ( ( if ( M <_ 2 , M , 2 ) ... M ) e. Fin /\ ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) C_ ( if ( M <_ 2 , M , 2 ) ... M ) ) -> ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) e. Fin ) |
|
| 72 | 69 70 71 | mp2an | |- ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) e. Fin |
| 73 | 72 | a1i | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) e. Fin ) |
| 74 | ssun1 | |- ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) C_ ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) u. ( ( ( M + 1 ) ... N ) i^i Prime ) ) |
|
| 75 | 74 42 | sseqtrrid | |- ( N e. ( ZZ>= ` M ) -> ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) C_ ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
| 76 | 75 | sselda | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ) -> p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
| 77 | 76 53 | syldan | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 78 | 73 77 | fsumcl | |- ( N e. ( ZZ>= ` M ) -> sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) e. CC ) |
| 79 | fzfi | |- ( ( M + 1 ) ... N ) e. Fin |
|
| 80 | inss1 | |- ( ( ( M + 1 ) ... N ) i^i Prime ) C_ ( ( M + 1 ) ... N ) |
|
| 81 | ssfi | |- ( ( ( ( M + 1 ) ... N ) e. Fin /\ ( ( ( M + 1 ) ... N ) i^i Prime ) C_ ( ( M + 1 ) ... N ) ) -> ( ( ( M + 1 ) ... N ) i^i Prime ) e. Fin ) |
|
| 82 | 79 80 81 | mp2an | |- ( ( ( M + 1 ) ... N ) i^i Prime ) e. Fin |
| 83 | 82 | a1i | |- ( N e. ( ZZ>= ` M ) -> ( ( ( M + 1 ) ... N ) i^i Prime ) e. Fin ) |
| 84 | ssun2 | |- ( ( ( M + 1 ) ... N ) i^i Prime ) C_ ( ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) u. ( ( ( M + 1 ) ... N ) i^i Prime ) ) |
|
| 85 | 84 42 | sseqtrrid | |- ( N e. ( ZZ>= ` M ) -> ( ( ( M + 1 ) ... N ) i^i Prime ) C_ ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
| 86 | 85 | sselda | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ) -> p e. ( ( if ( M <_ 2 , M , 2 ) ... N ) i^i Prime ) ) |
| 87 | 86 53 | syldan | |- ( ( N e. ( ZZ>= ` M ) /\ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 88 | 83 87 | fsumcl | |- ( N e. ( ZZ>= ` M ) -> sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) e. CC ) |
| 89 | 78 88 | pncan2d | |- ( N e. ( ZZ>= ` M ) -> ( ( sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) + sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) - sum_ p e. ( ( if ( M <_ 2 , M , 2 ) ... M ) i^i Prime ) ( log ` p ) ) = sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) |
| 90 | 68 89 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( ( theta ` N ) - ( theta ` M ) ) = sum_ p e. ( ( ( M + 1 ) ... N ) i^i Prime ) ( log ` p ) ) |