This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efchtdvds | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chtcl | ⊢ ( 𝐵 ∈ ℝ → ( θ ‘ 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) ∈ ℝ ) |
| 3 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) ∈ ℂ ) |
| 4 | chtcl | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ∈ ℂ ) |
| 7 | efsub | ⊢ ( ( ( θ ‘ 𝐵 ) ∈ ℂ ∧ ( θ ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ) | |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ) |
| 9 | chtfl | ⊢ ( 𝐵 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐵 ) ) = ( θ ‘ 𝐵 ) ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ ( ⌊ ‘ 𝐵 ) ) = ( θ ‘ 𝐵 ) ) |
| 11 | chtfl | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |
| 13 | 10 12 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) |
| 14 | flword2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) | |
| 15 | chtdif | ⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 17 | 13 16 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 18 | ssrab2 | ⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℝ | |
| 19 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 20 | 18 19 | sstri | ⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ |
| 21 | 20 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ ) |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 24 | 23 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 25 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑧 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 27 | 26 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝑦 + 𝑧 ) ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) ) |
| 30 | simpll | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℝ ) | |
| 31 | simprl | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℝ ) | |
| 32 | 30 31 | readdcld | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 33 | 30 | recnd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 34 | 31 | recnd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
| 35 | efadd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
| 37 | nnmulcl | ⊢ ( ( ( exp ‘ 𝑦 ) ∈ ℕ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) | |
| 38 | 37 | ad2ant2l | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
| 39 | 36 38 | eqeltrd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) |
| 40 | 29 32 39 | elrabd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 41 | 24 27 40 | syl2anb | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 42 | 41 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 43 | fzfid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ) | |
| 44 | inss1 | ⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ⊆ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) | |
| 45 | ssfi | ⊢ ( ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ∧ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ⊆ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ) → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ∈ Fin ) | |
| 46 | 43 44 45 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ∈ Fin ) |
| 47 | fveq2 | ⊢ ( 𝑥 = ( log ‘ 𝑝 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( log ‘ 𝑝 ) ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑥 = ( log ‘ 𝑝 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) ) |
| 49 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) | |
| 50 | 49 | elin2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 51 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 53 | 52 | nnrpd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 54 | 53 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 55 | 53 | reeflogd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
| 56 | 55 52 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
| 57 | 48 54 56 | elrabd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 58 | 0re | ⊢ 0 ∈ ℝ | |
| 59 | 1nn | ⊢ 1 ∈ ℕ | |
| 60 | fveq2 | ⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = ( exp ‘ 0 ) ) | |
| 61 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 62 | 60 61 | eqtrdi | ⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = 1 ) |
| 63 | 62 | eleq1d | ⊢ ( 𝑥 = 0 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 64 | 63 | elrab | ⊢ ( 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 0 ∈ ℝ ∧ 1 ∈ ℕ ) ) |
| 65 | 58 59 64 | mpbir2an | ⊢ 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } |
| 66 | 65 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 67 | 21 42 46 57 66 | fsumcllem | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 68 | 17 67 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 69 | fveq2 | ⊢ ( 𝑥 = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑥 = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) ) |
| 71 | 70 | elrab | ⊢ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ ℝ ∧ ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) ) |
| 72 | 71 | simprbi | ⊢ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 73 | 68 72 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 74 | 8 73 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 75 | 74 | nnzd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) |
| 76 | efchtcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) | |
| 77 | 76 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |
| 78 | 77 | nnzd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℤ ) |
| 79 | 77 | nnne0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ≠ 0 ) |
| 80 | efchtcl | ⊢ ( 𝐵 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℕ ) | |
| 81 | 80 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℕ ) |
| 82 | 81 | nnzd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℤ ) |
| 83 | dvdsval2 | ⊢ ( ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℤ ∧ ( exp ‘ ( θ ‘ 𝐴 ) ) ≠ 0 ∧ ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℤ ) → ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) ) | |
| 84 | 78 79 82 83 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) ) |
| 85 | 75 84 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ) |