This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppisval2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppisval | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 3 | fzss1 | ⊢ ( 2 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 5 | 4 | ssrind | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 6 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 7 | elin | ⊢ ( 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ↔ ( 𝑥 ∈ ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑥 ∈ ℙ ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( 𝑥 ∈ ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑥 ∈ ℙ ) ) |
| 9 | 8 | simprd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑥 ∈ ℙ ) |
| 10 | prmuz2 | ⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) |
| 12 | 8 | simpld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑥 ∈ ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 13 | elfzuz3 | ⊢ ( 𝑥 ∈ ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 15 | elfzuzb | ⊢ ( 𝑥 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) ) | |
| 16 | 11 14 15 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑥 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 17 | 16 9 | elind | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑥 ∈ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 18 | 5 17 | eqelssd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 19 | 2 18 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |