This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter is free iff it contains the Fréchet filter cfinfil as a subset. (Contributed by NM, 14-Jul-2008) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfinufil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ ↔ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ Fin } ⊆ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 2 | ufilb | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 4 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 6 | filfinnfr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) | |
| 7 | 6 | 3exp | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ∩ 𝐹 ≠ ∅ ) ) ) |
| 8 | 7 | com23 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) ) |
| 9 | 5 8 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) |
| 11 | 3 10 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ¬ 𝑥 ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) |
| 12 | 11 | necon4bd | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ∩ 𝐹 = ∅ → 𝑥 ∈ 𝐹 ) ) |
| 13 | 12 | ex | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ( ∩ 𝐹 = ∅ → 𝑥 ∈ 𝐹 ) ) ) |
| 14 | 13 | com23 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∩ 𝐹 = ∅ → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
| 15 | 1 14 | sylan2 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∩ 𝐹 = ∅ → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
| 16 | 15 | ralrimdva | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
| 17 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 18 | uffixsn | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → { 𝑦 } ∈ 𝐹 ) | |
| 19 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { 𝑦 } ∈ 𝐹 ) → { 𝑦 } ⊆ 𝑋 ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → { 𝑦 } ⊆ 𝑋 ) |
| 21 | dfss4 | ⊢ ( { 𝑦 } ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) = { 𝑦 } ) | |
| 22 | 20 21 | sylib | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) = { 𝑦 } ) |
| 23 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 24 | 22 23 | eqeltrdi | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin ) |
| 25 | difss | ⊢ ( 𝑋 ∖ { 𝑦 } ) ⊆ 𝑋 | |
| 26 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 27 | elpw2g | ⊢ ( 𝑋 ∈ 𝐹 → ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ { 𝑦 } ) ⊆ 𝑋 ) ) | |
| 28 | 17 26 27 | 3syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ { 𝑦 } ) ⊆ 𝑋 ) ) |
| 29 | 25 28 | mpbiri | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ) |
| 30 | difeq2 | ⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin ↔ ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin ) ) |
| 32 | eleq1 | ⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) | |
| 33 | 31 32 | imbi12d | ⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ↔ ( ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) ) |
| 34 | 33 | rspcv | ⊢ ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ( ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) ) |
| 35 | 29 34 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ( ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) ) |
| 36 | 24 35 | mpid | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) |
| 37 | ufilb | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ { 𝑦 } ⊆ 𝑋 ) → ( ¬ { 𝑦 } ∈ 𝐹 ↔ ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) | |
| 38 | 20 37 | syldan | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ¬ { 𝑦 } ∈ 𝐹 ↔ ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) |
| 39 | 18 | pm2.24d | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ¬ { 𝑦 } ∈ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
| 40 | 38 39 | sylbird | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
| 41 | 36 40 | syld | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
| 42 | 41 | impancom | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) → ( 𝑦 ∈ ∩ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
| 43 | 42 | pm2.01d | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) → ¬ 𝑦 ∈ ∩ 𝐹 ) |
| 44 | 43 | eq0rdv | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) → ∩ 𝐹 = ∅ ) |
| 45 | 44 | ex | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ∩ 𝐹 = ∅ ) ) |
| 46 | 16 45 | impbid | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
| 47 | rabss | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ Fin } ⊆ 𝐹 ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) | |
| 48 | 46 47 | bitr4di | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ ↔ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ Fin } ⊆ 𝐹 ) ) |