This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Mario Carneiro, 4-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufinffr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐴 ∈ 𝑓 ∧ ∩ 𝑓 = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf | ⊢ ¬ ω ∈ Fin | |
| 2 | domfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ω ≼ 𝐴 ) → ω ∈ Fin ) | |
| 3 | 2 | expcom | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∈ Fin → ω ∈ Fin ) ) |
| 4 | 1 3 | mtoi | ⊢ ( ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin ) |
| 5 | cfinfil | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ∈ ( Fil ‘ 𝑋 ) ) | |
| 6 | 4 5 | syl3an3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ∈ ( Fil ‘ 𝑋 ) ) |
| 7 | filssufil | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 ) |
| 9 | difeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐴 ) ) | |
| 10 | difid | ⊢ ( 𝐴 ∖ 𝐴 ) = ∅ | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ∅ ) |
| 12 | 11 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 13 | elpw2g | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) | |
| 14 | 13 | biimpar | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ 𝒫 𝑋 ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → 𝐴 ∈ 𝒫 𝑋 ) |
| 16 | 0fi | ⊢ ∅ ∈ Fin | |
| 17 | 16 | a1i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ∅ ∈ Fin ) |
| 18 | 12 15 17 | elrabd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ) |
| 19 | ssel | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } → 𝐴 ∈ 𝑓 ) ) | |
| 20 | 18 19 | syl5com | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → 𝐴 ∈ 𝑓 ) ) |
| 21 | intss | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → ∩ 𝑓 ⊆ ∩ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ) | |
| 22 | neldifsn | ⊢ ¬ 𝑦 ∈ ( 𝐴 ∖ { 𝑦 } ) | |
| 23 | elinti | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } → ( ( 𝐴 ∖ { 𝑦 } ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } → 𝑦 ∈ ( 𝐴 ∖ { 𝑦 } ) ) ) | |
| 24 | 22 23 | mtoi | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } → ¬ ( 𝐴 ∖ { 𝑦 } ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ) |
| 25 | difeq2 | ⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ) ) |
| 27 | simp2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → 𝐴 ⊆ 𝑋 ) | |
| 28 | 27 | ssdifssd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝑋 ) |
| 29 | elpw2g | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝑋 ) ) | |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝑋 ) ) |
| 31 | 28 30 | mpbird | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ) |
| 32 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 33 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ) ) | |
| 34 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ { 𝑦 } ) ) | |
| 35 | 34 | notbii | ⊢ ( ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ { 𝑦 } ) ) |
| 36 | iman | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑦 } ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ { 𝑦 } ) ) | |
| 37 | 35 36 | bitr4i | ⊢ ( ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑦 } ) ) |
| 38 | 37 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑦 } ) ) ) |
| 39 | 33 38 | bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑦 } ) ) ) |
| 40 | pm3.35 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑦 } ) ) → 𝑥 ∈ { 𝑦 } ) | |
| 41 | 39 40 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) → 𝑥 ∈ { 𝑦 } ) |
| 42 | 41 | ssriv | ⊢ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ⊆ { 𝑦 } |
| 43 | ssfi | ⊢ ( ( { 𝑦 } ∈ Fin ∧ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ⊆ { 𝑦 } ) → ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ) | |
| 44 | 32 42 43 | mp2an | ⊢ ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin |
| 45 | 44 | a1i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( 𝐴 ∖ ( 𝐴 ∖ { 𝑦 } ) ) ∈ Fin ) |
| 46 | 26 31 45 | elrabd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ) |
| 47 | 24 46 | nsyl3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ) |
| 48 | 47 | eq0rdv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ∩ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } = ∅ ) |
| 49 | 48 | sseq2d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( ∩ 𝑓 ⊆ ∩ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ∩ 𝑓 ⊆ ∅ ) ) |
| 50 | 21 49 | imbitrid | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → ∩ 𝑓 ⊆ ∅ ) ) |
| 51 | ss0 | ⊢ ( ∩ 𝑓 ⊆ ∅ → ∩ 𝑓 = ∅ ) | |
| 52 | 50 51 | syl6 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → ∩ 𝑓 = ∅ ) ) |
| 53 | 20 52 | jcad | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → ( 𝐴 ∈ 𝑓 ∧ ∩ 𝑓 = ∅ ) ) ) |
| 54 | 53 | reximdv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ⊆ 𝑓 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐴 ∈ 𝑓 ∧ ∩ 𝑓 = ∅ ) ) ) |
| 55 | 8 54 | mpd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑋 ∧ ω ≼ 𝐴 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐴 ∈ 𝑓 ∧ ∩ 𝑓 = ∅ ) ) |