This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative complements of the finite parts of an infinite set is a filter. When A = NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfinfil | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 3 | 2 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 4 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) ) |
| 8 | simp1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → 𝑋 ∈ 𝑉 ) | |
| 9 | ssdif0 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝐴 ∖ 𝑋 ) = ∅ ) | |
| 10 | 0fi | ⊢ ∅ ∈ Fin | |
| 11 | eleq1 | ⊢ ( ( 𝐴 ∖ 𝑋 ) = ∅ → ( ( 𝐴 ∖ 𝑋 ) ∈ Fin ↔ ∅ ∈ Fin ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( ( 𝐴 ∖ 𝑋 ) = ∅ → ( 𝐴 ∖ 𝑋 ) ∈ Fin ) |
| 13 | 9 12 | sylbi | ⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∖ 𝑋 ) ∈ Fin ) |
| 14 | difeq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑋 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |
| 16 | 15 | sbcieg | ⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |
| 17 | 16 | biimpar | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) → [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
| 18 | 13 17 | sylan2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ) → [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
| 20 | 0ex | ⊢ ∅ ∈ V | |
| 21 | difeq2 | ⊢ ( 𝑦 = ∅ → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ∅ ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ∅ ) ∈ Fin ) ) |
| 23 | 20 22 | sbcie | ⊢ ( [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ∅ ) ∈ Fin ) |
| 24 | dif0 | ⊢ ( 𝐴 ∖ ∅ ) = 𝐴 | |
| 25 | 24 | eleq1i | ⊢ ( ( 𝐴 ∖ ∅ ) ∈ Fin ↔ 𝐴 ∈ Fin ) |
| 26 | 23 25 | sylbb | ⊢ ( [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin → 𝐴 ∈ Fin ) |
| 27 | 26 | con3i | ⊢ ( ¬ 𝐴 ∈ Fin → ¬ [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
| 28 | 27 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ¬ [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
| 29 | sscon | ⊢ ( 𝑤 ⊆ 𝑧 → ( 𝐴 ∖ 𝑧 ) ⊆ ( 𝐴 ∖ 𝑤 ) ) | |
| 30 | ssfi | ⊢ ( ( ( 𝐴 ∖ 𝑤 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ⊆ ( 𝐴 ∖ 𝑤 ) ) → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) | |
| 31 | 30 | expcom | ⊢ ( ( 𝐴 ∖ 𝑧 ) ⊆ ( 𝐴 ∖ 𝑤 ) → ( ( 𝐴 ∖ 𝑤 ) ∈ Fin → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
| 32 | 29 31 | syl | ⊢ ( 𝑤 ⊆ 𝑧 → ( ( 𝐴 ∖ 𝑤 ) ∈ Fin → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
| 33 | vex | ⊢ 𝑤 ∈ V | |
| 34 | difeq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑤 ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) ) |
| 36 | 33 35 | sbcie | ⊢ ( [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) |
| 37 | vex | ⊢ 𝑧 ∈ V | |
| 38 | difeq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑧 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
| 40 | 37 39 | sbcie | ⊢ ( [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) |
| 41 | 32 36 40 | 3imtr4g | ⊢ ( 𝑤 ⊆ 𝑧 → ( [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin → [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin → [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 43 | difindi | ⊢ ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) = ( ( 𝐴 ∖ 𝑧 ) ∪ ( 𝐴 ∖ 𝑤 ) ) | |
| 44 | unfi | ⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) → ( ( 𝐴 ∖ 𝑧 ) ∪ ( 𝐴 ∖ 𝑤 ) ) ∈ Fin ) | |
| 45 | 43 44 | eqeltrid | ⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) → ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) |
| 46 | 45 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) → ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) ) |
| 47 | 40 36 | anbi12i | ⊢ ( ( [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ↔ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) ) |
| 48 | 37 | inex1 | ⊢ ( 𝑧 ∩ 𝑤 ) ∈ V |
| 49 | difeq2 | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 50 | 49 | eleq1d | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) ) |
| 51 | 48 50 | sbcie | ⊢ ( [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) |
| 52 | 46 47 51 | 3imtr4g | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 53 | 7 8 19 28 42 52 | isfild | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ∈ ( Fil ‘ 𝑋 ) ) |