This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffixsn | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 2 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 4 | intssuni | ⊢ ( 𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹 ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 6 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 7 | 2 6 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 8 | 5 7 | sseqtrd | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ 𝑋 ) |
| 9 | 8 | sselda | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 10 | 9 | snssd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ⊆ 𝑋 ) |
| 11 | snex | ⊢ { 𝐴 } ∈ V | |
| 12 | 11 | elpw | ⊢ ( { 𝐴 } ∈ 𝒫 𝑋 ↔ { 𝐴 } ⊆ 𝑋 ) |
| 13 | 10 12 | sylibr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ 𝒫 𝑋 ) |
| 14 | snidg | ⊢ ( 𝐴 ∈ ∩ 𝐹 → 𝐴 ∈ { 𝐴 } ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐴 ∈ { 𝐴 } ) |
| 16 | 1 13 15 | elrabd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 17 | uffixfr | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) | |
| 18 | 17 | biimpa | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 19 | 16 18 | eleqtrrd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ 𝐹 ) |