This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc4 . (Contributed by Mario Carneiro, 31-Jan-2013) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc4lem.1 | ⊢ 𝐴 ∈ V | |
| axdc4lem.2 | ⊢ 𝐺 = ( 𝑛 ∈ ω , 𝑥 ∈ 𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ) | ||
| Assertion | axdc4lem | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4lem.1 | ⊢ 𝐴 ∈ V | |
| 2 | axdc4lem.2 | ⊢ 𝐺 = ( 𝑛 ∈ ω , 𝑥 ∈ 𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ) | |
| 3 | peano1 | ⊢ ∅ ∈ ω | |
| 4 | opelxpi | ⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → 〈 ∅ , 𝐶 〉 ∈ ( ω × 𝐴 ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐶 ∈ 𝐴 → 〈 ∅ , 𝐶 〉 ∈ ( ω × 𝐴 ) ) |
| 6 | simp2 | ⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ω ) | |
| 7 | fovcdm | ⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) | |
| 8 | peano2 | ⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) | |
| 9 | 8 | snssd | ⊢ ( 𝑛 ∈ ω → { suc 𝑛 } ⊆ ω ) |
| 10 | eldifi | ⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ) | |
| 11 | 1 | elpw2 | ⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝑛 𝐹 𝑥 ) ⊆ 𝐴 ) |
| 12 | xpss12 | ⊢ ( ( { suc 𝑛 } ⊆ ω ∧ ( 𝑛 𝐹 𝑥 ) ⊆ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) | |
| 13 | 11 12 | sylan2b | ⊢ ( ( { suc 𝑛 } ⊆ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
| 14 | 9 10 13 | syl2an | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
| 15 | snex | ⊢ { suc 𝑛 } ∈ V | |
| 16 | ovex | ⊢ ( 𝑛 𝐹 𝑥 ) ∈ V | |
| 17 | 15 16 | xpex | ⊢ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ V |
| 18 | 17 | elpw | ⊢ ( ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
| 19 | 14 18 | sylibr | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ) |
| 20 | 6 7 19 | syl2anc | ⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ) |
| 21 | eldifn | ⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ) | |
| 22 | 16 | elsn | ⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ↔ ( 𝑛 𝐹 𝑥 ) = ∅ ) |
| 23 | 22 | necon3bbii | ⊢ ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ↔ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) |
| 24 | vex | ⊢ 𝑛 ∈ V | |
| 25 | 24 | sucex | ⊢ suc 𝑛 ∈ V |
| 26 | 25 | snnz | ⊢ { suc 𝑛 } ≠ ∅ |
| 27 | xpnz | ⊢ ( ( { suc 𝑛 } ≠ ∅ ∧ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) | |
| 28 | 27 | biimpi | ⊢ ( ( { suc 𝑛 } ≠ ∅ ∧ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
| 29 | 26 28 | mpan | ⊢ ( ( 𝑛 𝐹 𝑥 ) ≠ ∅ → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
| 30 | 23 29 | sylbi | ⊢ ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
| 31 | 17 | elsn | ⊢ ( ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ∅ ) |
| 32 | 31 | necon3bbii | ⊢ ( ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
| 33 | 30 32 | sylibr | ⊢ ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } → ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ) |
| 34 | 7 21 33 | 3syl | ⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ) |
| 35 | 20 34 | eldifd | ⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
| 36 | 35 | 3expib | ⊢ ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) ) |
| 37 | 36 | ralrimivv | ⊢ ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
| 38 | 2 | fmpo | ⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ↔ 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
| 39 | 37 38 | sylib | ⊢ ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
| 40 | dcomex | ⊢ ω ∈ V | |
| 41 | 40 1 | xpex | ⊢ ( ω × 𝐴 ) ∈ V |
| 42 | 41 | axdc3 | ⊢ ( ( 〈 ∅ , 𝐶 〉 ∈ ( ω × 𝐴 ) ∧ 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 43 | 5 39 42 | syl2an | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 44 | 2ndcof | ⊢ ( ℎ : ω ⟶ ( ω × 𝐴 ) → ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) | |
| 45 | 44 | 3ad2ant1 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) |
| 46 | 45 | adantl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) |
| 47 | fex2 | ⊢ ( ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ∧ ω ∈ V ∧ 𝐴 ∈ V ) → ( 2nd ∘ ℎ ) ∈ V ) | |
| 48 | 40 1 47 | mp3an23 | ⊢ ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 → ( 2nd ∘ ℎ ) ∈ V ) |
| 49 | 46 48 | syl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 2nd ∘ ℎ ) ∈ V ) |
| 50 | fvco3 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ∅ ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ ( ℎ ‘ ∅ ) ) ) | |
| 51 | 3 50 | mpan2 | ⊢ ( ℎ : ω ⟶ ( ω × 𝐴 ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ ( ℎ ‘ ∅ ) ) ) |
| 52 | 51 | 3ad2ant1 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ ( ℎ ‘ ∅ ) ) ) |
| 53 | fveq2 | ⊢ ( ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 → ( 2nd ‘ ( ℎ ‘ ∅ ) ) = ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) ) | |
| 54 | 53 | 3ad2ant2 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 2nd ‘ ( ℎ ‘ ∅ ) ) = ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) ) |
| 56 | op2ndg | ⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) = 𝐶 ) | |
| 57 | 3 56 | mpan | ⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) = 𝐶 ) |
| 58 | 55 57 | sylan9eqr | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ) |
| 59 | nfv | ⊢ Ⅎ 𝑘 𝐶 ∈ 𝐴 | |
| 60 | nfv | ⊢ Ⅎ 𝑘 ℎ : ω ⟶ ( ω × 𝐴 ) | |
| 61 | nfv | ⊢ Ⅎ 𝑘 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 | |
| 62 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) | |
| 63 | 60 61 62 | nf3an | ⊢ Ⅎ 𝑘 ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
| 64 | 59 63 | nfan | ⊢ Ⅎ 𝑘 ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 65 | fveq2 | ⊢ ( 𝑚 = ∅ → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ ∅ ) ) | |
| 66 | opeq1 | ⊢ ( 𝑚 = ∅ → 〈 𝑚 , 𝑧 〉 = 〈 ∅ , 𝑧 〉 ) | |
| 67 | 65 66 | eqeq12d | ⊢ ( 𝑚 = ∅ → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) ) |
| 68 | 67 | exbidv | ⊢ ( 𝑚 = ∅ → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) ) |
| 69 | fveq2 | ⊢ ( 𝑚 = 𝑖 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑖 ) ) | |
| 70 | opeq1 | ⊢ ( 𝑚 = 𝑖 → 〈 𝑚 , 𝑧 〉 = 〈 𝑖 , 𝑧 〉 ) | |
| 71 | 69 70 | eqeq12d | ⊢ ( 𝑚 = 𝑖 → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) ) |
| 72 | 71 | exbidv | ⊢ ( 𝑚 = 𝑖 → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) ) |
| 73 | fveq2 | ⊢ ( 𝑚 = suc 𝑖 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ suc 𝑖 ) ) | |
| 74 | opeq1 | ⊢ ( 𝑚 = suc 𝑖 → 〈 𝑚 , 𝑧 〉 = 〈 suc 𝑖 , 𝑧 〉 ) | |
| 75 | 73 74 | eqeq12d | ⊢ ( 𝑚 = suc 𝑖 → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) |
| 76 | 75 | exbidv | ⊢ ( 𝑚 = suc 𝑖 → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) |
| 77 | opeq2 | ⊢ ( 𝑧 = 𝐶 → 〈 ∅ , 𝑧 〉 = 〈 ∅ , 𝐶 〉 ) | |
| 78 | 77 | eqeq2d | ⊢ ( 𝑧 = 𝐶 → ( ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ↔ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ) ) |
| 79 | 78 | spcegv | ⊢ ( 𝐶 ∈ 𝐴 → ( ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 → ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) ) |
| 80 | 79 | imp | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ) → ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) |
| 81 | 80 | 3ad2antr2 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) |
| 82 | fveq2 | ⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( 𝐺 ‘ 〈 𝑖 , 𝑧 〉 ) ) | |
| 83 | df-ov | ⊢ ( 𝑖 𝐺 𝑧 ) = ( 𝐺 ‘ 〈 𝑖 , 𝑧 〉 ) | |
| 84 | 82 83 | eqtr4di | ⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( 𝑖 𝐺 𝑧 ) ) |
| 85 | 84 | adantl | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( 𝑖 𝐺 𝑧 ) ) |
| 86 | simplr | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → 𝑖 ∈ ω ) | |
| 87 | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ℎ ‘ 𝑖 ) ∈ ( ω × 𝐴 ) ) | |
| 88 | eleq1 | ⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ ‘ 𝑖 ) ∈ ( ω × 𝐴 ) ↔ 〈 𝑖 , 𝑧 〉 ∈ ( ω × 𝐴 ) ) ) | |
| 89 | opelxp2 | ⊢ ( 〈 𝑖 , 𝑧 〉 ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 90 | 88 89 | biimtrdi | ⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ ‘ 𝑖 ) ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 91 | 87 90 | mpan9 | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → 𝑧 ∈ 𝐴 ) |
| 92 | suceq | ⊢ ( 𝑛 = 𝑖 → suc 𝑛 = suc 𝑖 ) | |
| 93 | 92 | sneqd | ⊢ ( 𝑛 = 𝑖 → { suc 𝑛 } = { suc 𝑖 } ) |
| 94 | oveq1 | ⊢ ( 𝑛 = 𝑖 → ( 𝑛 𝐹 𝑥 ) = ( 𝑖 𝐹 𝑥 ) ) | |
| 95 | 93 94 | xpeq12d | ⊢ ( 𝑛 = 𝑖 → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑥 ) ) ) |
| 96 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑖 𝐹 𝑥 ) = ( 𝑖 𝐹 𝑧 ) ) | |
| 97 | 96 | xpeq2d | ⊢ ( 𝑥 = 𝑧 → ( { suc 𝑖 } × ( 𝑖 𝐹 𝑥 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
| 98 | snex | ⊢ { suc 𝑖 } ∈ V | |
| 99 | ovex | ⊢ ( 𝑖 𝐹 𝑧 ) ∈ V | |
| 100 | 98 99 | xpex | ⊢ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ∈ V |
| 101 | 95 97 2 100 | ovmpo | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑧 ∈ 𝐴 ) → ( 𝑖 𝐺 𝑧 ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
| 102 | 86 91 101 | syl2anc | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( 𝑖 𝐺 𝑧 ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
| 103 | 85 102 | eqtrd | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
| 104 | suceq | ⊢ ( 𝑘 = 𝑖 → suc 𝑘 = suc 𝑖 ) | |
| 105 | 104 | fveq2d | ⊢ ( 𝑘 = 𝑖 → ( ℎ ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑖 ) ) |
| 106 | 2fveq3 | ⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) | |
| 107 | 105 106 | eleq12d | ⊢ ( 𝑘 = 𝑖 → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 108 | 107 | rspcv | ⊢ ( 𝑖 ∈ ω → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 109 | 108 | ad2antlr | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 110 | eleq2 | ⊢ ( ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ( ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) ) | |
| 111 | elxp | ⊢ ( ( ℎ ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ↔ ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) ) | |
| 112 | velsn | ⊢ ( 𝑠 ∈ { suc 𝑖 } ↔ 𝑠 = suc 𝑖 ) | |
| 113 | opeq1 | ⊢ ( 𝑠 = suc 𝑖 → 〈 𝑠 , 𝑡 〉 = 〈 suc 𝑖 , 𝑡 〉 ) | |
| 114 | 112 113 | sylbi | ⊢ ( 𝑠 ∈ { suc 𝑖 } → 〈 𝑠 , 𝑡 〉 = 〈 suc 𝑖 , 𝑡 〉 ) |
| 115 | 114 | eqeq2d | ⊢ ( 𝑠 ∈ { suc 𝑖 } → ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ↔ ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) |
| 116 | 115 | biimpac | ⊢ ( ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ 𝑠 ∈ { suc 𝑖 } ) → ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
| 117 | 116 | adantrr | ⊢ ( ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
| 118 | 117 | eximi | ⊢ ( ∃ 𝑡 ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
| 119 | 118 | exlimiv | ⊢ ( ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
| 120 | 111 119 | sylbi | ⊢ ( ( ℎ ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
| 121 | 110 120 | biimtrdi | ⊢ ( ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ( ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) |
| 122 | 103 109 121 | sylsyld | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) |
| 123 | 122 | expcom | ⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) ) |
| 124 | 123 | exlimiv | ⊢ ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) ) |
| 125 | 124 | com3l | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) ) |
| 126 | opeq2 | ⊢ ( 𝑡 = 𝑧 → 〈 suc 𝑖 , 𝑡 〉 = 〈 suc 𝑖 , 𝑧 〉 ) | |
| 127 | 126 | eqeq2d | ⊢ ( 𝑡 = 𝑧 → ( ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ↔ ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) |
| 128 | 127 | cbvexvw | ⊢ ( ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ↔ ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) |
| 129 | 125 128 | syl8ib | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
| 130 | 129 | impancom | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
| 131 | 130 | 3adant2 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
| 132 | 131 | adantl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
| 133 | 132 | com12 | ⊢ ( 𝑖 ∈ ω → ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
| 134 | 68 72 76 81 133 | finds2 | ⊢ ( 𝑚 ∈ ω → ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ) ) |
| 135 | 134 | com12 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑚 ∈ ω → ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ) ) |
| 136 | 135 | ralrimiv | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∀ 𝑚 ∈ ω ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ) |
| 137 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑘 ) ) | |
| 138 | opeq1 | ⊢ ( 𝑚 = 𝑘 → 〈 𝑚 , 𝑧 〉 = 〈 𝑘 , 𝑧 〉 ) | |
| 139 | 137 138 | eqeq12d | ⊢ ( 𝑚 = 𝑘 → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
| 140 | 139 | exbidv | ⊢ ( 𝑚 = 𝑘 → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
| 141 | 140 | rspccv | ⊢ ( ∀ 𝑚 ∈ ω ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 → ( 𝑘 ∈ ω → ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
| 142 | 136 141 | syl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑘 ∈ ω → ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
| 143 | 142 | 3impia | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) |
| 144 | simp21 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ℎ : ω ⟶ ( ω × 𝐴 ) ) | |
| 145 | simp3 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → 𝑘 ∈ ω ) | |
| 146 | rspa | ⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) | |
| 147 | 146 | 3ad2antl3 | ⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
| 148 | 147 | 3adant1 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
| 149 | simpl | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) | |
| 150 | 149 | fveq2d | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) ) |
| 151 | simprr | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → 𝑘 ∈ ω ) | |
| 152 | eleq1 | ⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ ‘ 𝑘 ) ∈ ( ω × 𝐴 ) ↔ 〈 𝑘 , 𝑧 〉 ∈ ( ω × 𝐴 ) ) ) | |
| 153 | opelxp2 | ⊢ ( 〈 𝑘 , 𝑧 〉 ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 154 | 152 153 | biimtrdi | ⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ ‘ 𝑘 ) ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 155 | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ 𝑘 ) ∈ ( ω × 𝐴 ) ) | |
| 156 | 154 155 | impel | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → 𝑧 ∈ 𝐴 ) |
| 157 | df-ov | ⊢ ( 𝑘 𝐺 𝑧 ) = ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) | |
| 158 | suceq | ⊢ ( 𝑛 = 𝑘 → suc 𝑛 = suc 𝑘 ) | |
| 159 | 158 | sneqd | ⊢ ( 𝑛 = 𝑘 → { suc 𝑛 } = { suc 𝑘 } ) |
| 160 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 𝐹 𝑥 ) = ( 𝑘 𝐹 𝑥 ) ) | |
| 161 | 159 160 | xpeq12d | ⊢ ( 𝑛 = 𝑘 → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑥 ) ) ) |
| 162 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑘 𝐹 𝑥 ) = ( 𝑘 𝐹 𝑧 ) ) | |
| 163 | 162 | xpeq2d | ⊢ ( 𝑥 = 𝑧 → ( { suc 𝑘 } × ( 𝑘 𝐹 𝑥 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
| 164 | snex | ⊢ { suc 𝑘 } ∈ V | |
| 165 | ovex | ⊢ ( 𝑘 𝐹 𝑧 ) ∈ V | |
| 166 | 164 165 | xpex | ⊢ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ∈ V |
| 167 | 161 163 2 166 | ovmpo | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ 𝐴 ) → ( 𝑘 𝐺 𝑧 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
| 168 | 157 167 | eqtr3id | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
| 169 | 151 156 168 | syl2anc | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
| 170 | 150 169 | eqtrd | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
| 171 | 170 | eleq2d | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ↔ ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) ) |
| 172 | elxp | ⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ↔ ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) ) | |
| 173 | peano2 | ⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) | |
| 174 | fvco3 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ suc 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) ) | |
| 175 | 173 174 | sylan2 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) ) |
| 176 | 175 | adantl | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) ) |
| 177 | simpll | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ) | |
| 178 | 177 | fveq2d | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) = ( 2nd ‘ 〈 𝑠 , 𝑡 〉 ) ) |
| 179 | 176 178 | eqtrd | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ 〈 𝑠 , 𝑡 〉 ) ) |
| 180 | vex | ⊢ 𝑠 ∈ V | |
| 181 | vex | ⊢ 𝑡 ∈ V | |
| 182 | 180 181 | op2nd | ⊢ ( 2nd ‘ 〈 𝑠 , 𝑡 〉 ) = 𝑡 |
| 183 | 179 182 | eqtrdi | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = 𝑡 ) |
| 184 | fvco3 | ⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) | |
| 185 | 184 | adantl | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) |
| 186 | simplr | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) | |
| 187 | 186 | fveq2d | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) = ( 2nd ‘ 〈 𝑘 , 𝑧 〉 ) ) |
| 188 | 185 187 | eqtrd | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = ( 2nd ‘ 〈 𝑘 , 𝑧 〉 ) ) |
| 189 | vex | ⊢ 𝑘 ∈ V | |
| 190 | vex | ⊢ 𝑧 ∈ V | |
| 191 | 189 190 | op2nd | ⊢ ( 2nd ‘ 〈 𝑘 , 𝑧 〉 ) = 𝑧 |
| 192 | 188 191 | eqtrdi | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = 𝑧 ) |
| 193 | 192 | oveq2d | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) = ( 𝑘 𝐹 𝑧 ) ) |
| 194 | 183 193 | eleq12d | ⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ↔ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) |
| 195 | 194 | biimprcd | ⊢ ( 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) → ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 196 | 195 | exp4c | ⊢ ( 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) → ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) ) |
| 197 | 196 | adantl | ⊢ ( ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) → ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) ) |
| 198 | 197 | impcom | ⊢ ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 199 | 198 | exlimivv | ⊢ ( ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 200 | 172 199 | sylbi | ⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 201 | 200 | com3l | ⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 202 | 201 | imp | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 203 | 171 202 | sylbid | ⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 204 | 203 | ex | ⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 205 | 204 | exlimiv | ⊢ ( ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 206 | 205 | 3imp | ⊢ ( ( ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ∧ ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
| 207 | 143 144 145 148 206 | syl121anc | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
| 208 | 207 | 3expia | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑘 ∈ ω → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 209 | 64 208 | ralrimi | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
| 210 | 46 58 209 | 3jca | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ∧ ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 211 | feq1 | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 : ω ⟶ 𝐴 ↔ ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) ) | |
| 212 | fveq1 | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 ‘ ∅ ) = ( ( 2nd ∘ ℎ ) ‘ ∅ ) ) | |
| 213 | 212 | eqeq1d | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ( 𝑔 ‘ ∅ ) = 𝐶 ↔ ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ) ) |
| 214 | fveq1 | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 ‘ suc 𝑘 ) = ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ) | |
| 215 | fveq1 | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 ‘ 𝑘 ) = ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) | |
| 216 | 215 | oveq2d | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
| 217 | 214 216 | eleq12d | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 218 | 217 | ralbidv | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
| 219 | 211 213 218 | 3anbi123d | ⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ∧ ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
| 220 | 49 210 219 | spcedv | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 221 | 220 | ex | ⊢ ( 𝐶 ∈ 𝐴 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 222 | 221 | exlimdv | ⊢ ( 𝐶 ∈ 𝐴 → ( ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 223 | 222 | adantr | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 224 | 43 223 | mpd | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |